15 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Кривошипно-шатунный механизм КШМ двигателя

Устройство кривошипно-шатунного механизма

Основной задачей двигателей внутреннего сгорания, использующиеся на всевозможной технике, является преобразование энергии, которая выделяется при сжигании определенных веществ, в случае с ДВС – это топливо на основе нефтепродуктов или спиртов и воздуха, необходимого для горения.

Преобразование энергии производится в механическое действие – вращение вала. Далее уже это вращение передается дальше, для выполнения полезного действия.

Однако реализация всего этого процесса не такая уж и простая. Нужно организовать правильно преобразование выделяемой энергии, обеспечить подачу топлива в камеры, где производиться сжигание топливной смеси для выделения энергии, отвод продуктов горения. И это не считая того, что тепло, выделяемое при сгорании нужно куда-то отводить, нужно убрать трение между подвижными элементами. В общем, процесс преобразования энергии сложен.

Поэтому ДВС – устройство довольно сложное, состоящее из значительного количества механизмов, выполняющих определенные функции. Что же касается преобразования энергии, то выполняет его механизм, называющийся кривошипно-шатунным. В целом, все остальные составные части силовой установки лишь обеспечивают условия для преобразования и обеспечивают максимально возможный выход КПД.

Принцип действия кривошипно-шатунного механизма

Основная же задача лежит на этом механизме, ведь он преобразовывает возвратно-поступательное перемещение поршня во вращение коленчатого вала, того вала, от движения которого и производится полезное действие.

Чтобы было более понятно, в двигателе есть цилиндро-поршневая группа, состоящая из гильз и поршней. Сверху гильза закрыта головкой, а внутри ее помещен поршень. Закрытая полость гильзы и является пространством, где производится сгорание топливной смеси.

При сгорании объем горючей смеси значительно возрастает, а поскольку стенки гильзы и головка являются неподвижными, то увеличение объема воздействует на единственный подвижный элемент этой схемы – поршень. То есть поршень воспринимает на себя давление газов, выделенных при сгорании, и от этого смещается вниз. Это и является первой ступенью преобразования – сгорание привело к движению поршня, то есть химический процесс перешел в механический.

И вот далее уже в действие вступает кривошипно-шатунный механизм. Поршень связан с кривошипом вала посредством шатуна. Данное соединение является жестким, но подвижным. Сам поршень закреплен на шатуне посредством пальца, что позволяет легко шатуну менять положение относительно поршня.

Шатун же своей нижней частью охватывает шейку кривошипа, которая имеет цилиндрическую форму. Это позволяет менять угол между поршнем и шатуном, а также шатуном и кривошипом вала, но при этом смещаться шатун вбок не может. Относительно поршня он только меняет угол, а на шейке кривошипа он вращается.

Поскольку соединение жесткое, то расстояние между шейкой кривошипа и самим поршнем не изменяется. Но кривошип имеет П-образную форму, поэтому относительно оси коленвала, на которой размещен этот кривошип, расстояние между поршнем и самим валом меняется.

За счет применения кривошипов и удалось организовать преобразование перемещения поршня во вращение вала.

Но это схема взаимодействия только цилиндро-поршневой группы с кривошипно-шатунным механизмом.

На деле же все значительно сложнее, ведь имеются взаимодействия между элементами этих составляющих, причем механические, а это значит, что в местах контакта этих элементов будет возникать трение, которое нужно по максимуму снизить. Также следует учитывать, что один кривошип неспособен взаимодействовать с большим количеством шатунов, а ведь двигатели создаются и с большим количеством цилиндров – до 16. При этом нужно же и обеспечить передачу вращательного движения дальше. Поэтому рассмотрим, из чего состоит цилиндро-поршневая группа (ЦПГ) и кривошипно-шатунный механизм (КШМ).

Начнем с ЦПГ. Основными в ней являются гильзы и поршни. Сюда же входят и кольца с пальцами.

Гильза

Гильзы существуют двух типов – сделанные непосредственно в блоке и являющиеся их частью, и съемные. Что касается выполненных в блоке, то представляют они собой цилиндрические углубления в нем нужной высоты и диаметра.

Съемные же имеют тоже цилиндрическую форму, но с торцов они открыты. Зачастую для надежной посадки в свое посадочное место в блоке, в верхней части ее имеется небольшой отлив, обеспечивающий это. В нижней же части для плотности используются резиновые кольца, установленные в проточные канавки на гильзе.

Внутренняя поверхность гильзы называется зеркалом, потому что она имеет высокую степень обработки, чтобы обеспечить минимально возможное трение между поршнем и зеркалом.

В двухтактных двигателях в гильзе проделываются на определенном уровне несколько отверстий, которые называются окнами. В классической схеме ДВС используется три окна – для впуска, выпуска и перепуска топливной смеси и отработанных продуктов. В оппозитных же установках типа ОРОС, которые тоже являются двухтактными, надобности в перепускном окне нет.

Поршень

Поршень принимает на себя энергию, выделяемую при сгорании, и за счет своего перемещения преобразовывает ее в механическое действие. Состоит он из днища, юбки и бобышек для установки пальца.

Именно днищем поршень и воспринимает энергию. Поверхность днища в бензиновых моторах изначально была ровной, позже на ней стали делать углубления для клапанов, предотвращающих столкновение последних с поршнями.

В дизельных же моторах, где смесеобразование происходит непосредственно в цилиндре, и составляющие смеси туда подаются по отдельности, в днищах поршня выполнена камера сгорания – углубления особой формы, обеспечивающие более лучшее смешивание компонентов смеси.

В инжекторных бензиновых двигателях тоже стали применять камеры сгорания, поскольку в них тоже составные части смеси подаются по отдельности.

Юбка является лишь его направляющей в гильзе. При этом нижняя часть ее имеет особую форму, чтобы исключить возможность соприкосновения юбки с шатуном.

Чтобы исключить просачивание продуктов горения в подпоршневое пространство используются поршневые кольца. Они подразделяются на компрессионные и маслосъемные.

В задачу компрессионных входит исключение появления зазора между поршнем и зеркалом, тем самым сохраняется давление в надпоршневом пространстве, которое тоже участвует в процессе.

Если бы компрессионных колец не было, трение между разными металлами, из которых изготавливаются поршень и гильза было бы очень высоким, при этом износ поршня происходил бы очень быстро.

В двухтактных двигателях маслосъемные кольца не применяются, поскольку смазка зеркала производиться маслом, которое добавляется в топливо.

В четырехтактных смазка производится отдельной системой, поэтому чтобы исключить перерасход масла используются маслосъемные кольца, снимающие излишки его с зеркала, и сбрасывая в поддон. Все кольца размещаются в канавках, проделанных в поршне.

Бобышки – отверстия в поршне, куда вставляется палец. Имеют отливы с внутренней части поршня для увеличения жесткости конструкции.

Палец представляет собой трубку значительной толщины с высокоточной обработкой внешней поверхности. Часто, чтобы палец не вышел за пределы поршня во время работы и не повредил зеркало гильзы, он стопориться кольцами, размещающимися в канавках, проделанных в бобышках.

Это конструкция ЦПГ. Теперь рассмотрим устройство кривошипно-шатунного механизма.

Шатун

Итак, состоит он из шатуна, коленчатого вала, посадочных мест этого вала в блоке и крышек крепления, вкладышей, втулки, полуколец.

Шатун – это стержень с отверстием в верхней части под поршневой палец. Нижняя часть его сделана в виде полукольца, которым он садится на шейку кривошипа, вокруг шейки он фиксируется крышкой, внутренняя поверхность ее тоже выполнена в виде полукольца, вместе с шатуном они и формируют жесткое, но подвижное соединение с шейкой – шатун может вращаться вокруг ее. Соединяется шатун со своей крышкой посредством болтовых соединений.

Чтобы снизить трение между пальцем и отверстием шатуна применяется медная или латунная втулка.

По всей длине внутри шатун имеет отверстие, через которое масло подается для смазки соединения шатуна и пальца.

Коленчатый вал

Перейдем к коленчатому валу. Он имеет достаточно сложную форму. Осью его выступают коренные шейки, посредством которых он соединен с блоком цилиндров. Для обеспечения жесткого соединения, но опять же подвижного, в блоке посадочные места вала выполнены в виде полуколец, второй частью этих полуколец выступают крышки, которыми вал поджимается к блоку. Крышки к с блоком соединены болтами.

Коленвал 4-х цилиндрового двигателя

Коренные шейки вала соединены с щеками, которые являются одной из составных частей кривошипа. В верхней части этих щек располагается шатунная шейка.

Количество коренных и шатунных шеек зависит от количества цилиндров, а также их компоновки. В рядных и V-образных двигателях на вал передаются очень большие нагрузки, поэтому должно быть обеспечено крепление вала к блоку, способное правильно распределять эту нагрузку.

Для этого на один кривошип вала должно приходиться две коренные шейки. Но поскольку кривошип размещен между двух шеек, то одна из них будет играть роль опорной и для другого кривошипа. Из этого следует, что у рядного 4-цилиндрового двигателя на валу имеется 4 кривошипа и 5 коренных шеек.

У V-образных двигателей ситуация несколько иная. В них цилиндры расположены в два ряда под определенным углом. Поэтому один кривошип взаимодействует с двумя шатунами. Поэтому у 8-цилиндрового двигателя используется только 4 кривошипа, и опять же 5 коренных шеек.

Уменьшение трения между шатунами и шейками, а также блоком с коренными шейками достигается благодаря использованию вкладышей – подшипников трения, которые помещаются между шейкой и шатуном или блоком с крышкой.

Смазка шеек вала производится под давлением. Для подачи масла применяются каналы, проделанные в шатунных и коренных шейках, их крышках, а также вкладышах.

В процессе работы возникают силы, которые пытаются сместить коленчатый вал в продольном направлении. Чтобы исключить это используются опорные полукольца.

В дизельных двигателях для компенсации нагрузок используются противовесы, которые прикрепляются к щекам кривошипов.

Маховик

С одной из сторон вала сделан фланец, к которому прикрепляется маховик, выполняющий несколько функций одновременно. Именно от маховика передается вращение. Он имеет значительный вес и габариты, что облегчает вращение коленчатому валу после того, как маховик раскрутится. Чтобы запустить двигатель нужно создать значительное усилие, поэтому по окружности на маховик нанесены зубья, которые называются венцом маховика. Посредством этого венца стартер раскручивает коленчатый вал при запуске силовой установки. Именно к маховику присоединяются механизмы, которые и используют вращение вала на выполнение полезного действия. У автомобиля это трансмиссия, обеспечивающая передачу вращения на колёса.

Чтобы исключить осевые биения, коленчатый вал и маховик должны быть хорошо отбалансированы.

Другой конец коленчатого вала, противоположный фланцу маховика используется зачастую для привода остальных механизмом и систем мотора: к примеру, там может размещаться шестерня привода масляного насоса, посадочное место для приводного шкива.

Это основная схема коленчатого вала. Особо нового пока ничего не придумано. Все новые разработки направлены пока только на снижение потерь мощности в результате трения между элементами ЦПГ и КШМ.

Также стараются снизить нагрузку на коленчатый вал путем изменения углов положения кривошипов относительно друг друга, но особо значительных результатов пока нет.

Кривошипно-шатунный механизм двигателя КШМ

При контролируемом сгорании топлива в ДВС автомобиля поршням придается возвратно поступательное движение. Для преобразования его в крутящий момент служит узел КШМ – кривошипно-шатунный механизм, шарнирно закрепленный к поршням и коленвалу. Основных неисправностей немного, но для устранения требуется полная разборка двигателя.

Конструкция КШМ

В отличие от прочих агрегатов автомобиля конструкция механизма кривошипно-шатунного условно включает в себя часть поршневой группы и коленчатый вал. Состоит КШМ из подвижных деталей и неподвижных элементов. Одну или несколько степеней свободы имеют:

  • шатун и поршень;
  • кольца компрессионные, стопорные и маслосъемные;
  • палец поршневой и кольцо стопорное;
  • вкладыши, болт крепежный и крышка шатуна;
  • маховик и коленвал;
  • противовес и шейки шатунные, коренные;
  • вкладыши.

К неподвижным элементам относятся головка и блок цилиндров.

В зависимости от конструкции ДВС и количества цилиндров кинематика кривошипно шатунного механизма несколько видоизменяется:

  • в рядном двигателе плоскость коленвала и цилиндров полностью совпадает;
  • в VR-образном моторе происходит смещение на угол 15 градусов;
  • в W-образном приводе величина смещения достигает 72 градусов.

Другими словами, в рядном двигателе рабочий цикл осуществляется поочередно 4-мя цилиндрами, что позволяет равномерно распределить нагрузки на коленвал. Для достижения компактных размеров ДВС модификации с большим количеством цилиндров размещаются V-образно. Что так же позволяет смягчить нагрузки на коленвал за счет гашения части энергии.

Чтобы характеристика кривошипно шатунного механизма была стабильной в момент перегрузок (высокая температура, большое давление и обороты, трудности с подачей смазки), вместо шариковых/роликовых подшипников применяются элементы скольжения с шатунными и коренными вкладышами. Неравномерность угловых скоростей вала в отдельных циклах сглаживается массивным маховиком за счет инертности этой детали.

Принцип действия и назначение

В отличие от электродвигателя принцип действия КШМ в двигателях внутреннего сгорания значительно сложнее:

  • поршни поочередно выталкиваются из цилиндров при воспламенении топливной смеси;
  • внутри них шарнирно закреплены шатунные детали сложной конфигурации;
  • коленчатый вал имеет ответную посадочную поверхность П-образного типа для нижней головки шатуна, что обеспечивает смещение от оси вращения вала;
  • за счет фиксированного расстояния между поршнем и коленвалом шатун описывает амплитуду в виде восьмерки, за счет чего и преобразуется поступательное движение с цилиндров в крутящий момент на валу.

Основное назначение расходных элементов КШМ (вкладыши, втулки, кольца) заключается в увеличении эксплуатационного ресурса этого узла. Поскольку число цилиндров достигает 16 штук в современных авто, устройство и работа механизма КШ должна быть идеально сбалансирована.

Поломки и проблемы кривошипно-шатунного механизма

Практически все детали КШМ являются парами трения, что наглядно подтверждает схема кинематики привода автомобиля. Если диагностика данного механизма привода внутреннего сгорания выявила неисправности, необходим капитальный ремонт двигателя, так как производится его полная разборка.

Технические особенности неисправностей КШМ заключаются в износе деталей трения. Основными поломками являются:

  • залегшие кольца на поршнях – из-за высокой выработки металла появляется люфт, возникает перекос и поршень заклинивается внутри цилиндра;
  • износ пальцев поршневых – вместо фиксированного размера между коленвалом/поршнем расстояние получается плавающим, изменяются характеристики крутящего момента;
  • выработка поршневой группы – стачивается зеркало цилиндра или поверхность поршня, меняются характеристики ДВС;
  • износ подшипников – шатунные или коренные вкладыши сточились, возникают ударные нагрузки на вал.

Основными причинами неисправностей становятся длительные нагрузки, отсутствие ТО, низкое качество смазки или выработка ресурса привода.

Залегание колец поршневых

Указанные неисправности кривошипно шатунного механизма диагностируются по признакам:

  • перебои в работе мотора;
  • постоянное уменьшение в картере уровня смазки;
  • отработанные газы принимают синий оттенок.

Поломка не может устраняться в домашних условиях, так как необходима высокая квалификация мастера и полная разборка двигателя.

Износ поршней и пальцев

Эти конкретные неисправности кривошипно шатунного механизма выявляются по следующим признакам:

  • пальцы – независимо от режима работы мотора в верхней части блока цилиндров слышен звонкий стук, пропадающий при выкручивании свечи, увеличивающийся при наборе оборотов валом;
  • поршни – выхлоп синего цвета, аналогичный предыдущему случаю стук, но только на холостых оборотах, после прогрева обычно исчезает.
Читать еще:  Лада 2114 PITBULL Вылечил стрелку уровня топлива

После диагностики этой неисправности в обязательном порядке требуется капремонт ДВС.

Износ подшипника шатунного и коренного

Неизбежно потребуется ремонт кривошипно шатунного механизма при выработке ресурса подшипников, о котором свидетельствуют следующие факторы:

  • подшипник шатуна – сигнальная лампа извещает о недостаточном давлении смазки, стук глухой, плавающий, идет из средней части блока цилиндров;
  • подшипник коренной – сигнальная лампа горит, свидетельствуя о низком давлении масла, в нижней части блока цилиндров возникает глухой стук.

По аналогии с предыдущими вариантами без капремонта обойтись не получится.

Способы диагностики КШМ

Вышеуказанные методики выявления причин не являются высокоточными. Служат поводом для поездки на СТО, где может быть произведено квалифицированное диагностирование кривошипно комбинированного механизма мастерами, обладающими необходимым опытом и практикой работ. Они имеют чертеж кинематики с точными размерами, допусками и посадками. Обладают необходимым для этого оборудованием.

Предварительная на определение стуков

Поскольку ремонт кривошипно шатунного механизма относится к дорогостоящим операциям капремонта двигателя, на начальном этапе мастер СТО позиционирует стуки и шумы внутри блока цилиндров. Для этого используется стетоскоп (обычно модификация КИ-1154 производителя Экранас). Технология исследований выглядит следующим образом:

  • рабочая поверхность стетоскопа прислоняется к стенкам БЦ на разных уровнях (в рабочей зоне подшипников шатунных и кривошипных);
  • двигатель прогревается до температуры ОЖ 75 – 80 градусов;
  • обороты увеличиваются вначале плавно, затем режим работ изменяется резко;
  • стуки прослушиваются лишь при возникновении зазора больше 0,1 – 0,2 мм.

Характер стука заметен исключительно профессионалу:

  • поршни о цилиндр издают звуки щелкающие, на холодном двигателе;
  • звонкий звук металл о металл при резком увеличении оборотов издает поршневой палец, реже при неправильно выставленном (опережение) угле зажигания;
  • коренные подшипники звучат в низкой тональности;
  • звук подшипников шатунных немного резче.

Внимание: Данная методика диагностики так же не является окончательной. Позволяет мастеру выявить наличие имеющихся дефектов с гарантией, что разбирать ДВС все же необходимо для замены расходных элементов.

Измерение суммарных зазоров в сопряжениях

Обычно техническое обслуживание кривошипно шатунного механизма осуществляется с помощью установки КИ-11140 для определения зазора в КШМ.

При этом не нужно снимать поддон картера и запускать мотор. Измеряются зазоры в головках шатуна суммарно:

  • поршень диагностируемого цилиндра позиционируется в верхней «мертвой точке»;
  • коленвал стопорится, устройство фиксируется на месте форсунки;
  • шток упирается с натягом в дно поршня, зажимается винтом;
  • установка компрессора подсоединяется к штуцеру, создается вакуум -0,06 МПа и давление такой же величины;
  • после 2 – 3 циклов подачи указанного давления и вакуума стабилизируются показания индикатора;
  • затем индикатор настраивается на отметку «0» в надпоршневом пространстве при давлении;
  • после чего, в него подается отрицательное давление.

Суммарные зазоры измеряют минимум три раза, выводят среднее значение, сравнивают с допустимой нормой эксплуатации из таблиц.

Определение объема газа, прорывающегося в картер

Не пригодна к эксплуатации существующая сборка кривошипно шатунного механизма авто, если проверка прорывающихся газов выявила большее его количество в картере. Измерения производятся прибором КИ-4887-И следующим способом:

  • газорасходомер подключается в полость картера и к глушителю или вакуумной установке;
  • двигатель включается в режим «под нагрузкой»;
  • прорывающиеся газы изменяют показания прибора на величину их объема, проходящего в единицу времени.

При значительном износе ДВС расход может превышать 120 л/мин, требуются дополнительные регулировки расходомера. После отсоединения системы вентилирования картера все дополнительные отверстия необходимо закрыть заглушками/пробками.

Измерение давления масла

Эксплуатируемая сборка кривошипно шатунного механизма считается пригодной к использованию, если проверка давления масла удовлетворяет норме. Измерения проводятся прибором КИ-5472, состоящим из рукава и манометра:

  • штатный манометр скручивается с маслофильтра;
  • на его место крепится прибор;
  • двигатель прогревается до 70 – 80 градусов;
  • фиксируется значение магистрального давления при оборотах холостого хода.

Предельно простое общее устройство системы смазки и прибора КИ позволяет снизить время диагностики.

Для ДВС карбюраторного типа считается нормальной компрессия в пределах 0,7 МПа. Поэтому в некоторых случаях диагност СТО измеряет компрессию прогретого двигателя. При этом разница показаний цилиндров не может превышать 0,1 МПа.

Технология ремонта

Основное назначение капремонта КШМ – восстановление ресурса поршневой группы и коленчатого вала. Для этого реставрируются посадочные места, заменяются пальцы, вкладыши.

Поршни и пальцы

Поршень, условно входящий в кривошипно шатунный механизм двигателя авто, изготавливается из алюминиевых сплавов. Палец создан из легированной стали, изнашивается меньше.

У поршней восстанавливается зеркало, геометрия канавок для колец и бобышек, внутри которых находится палец. Размеры поршневого пальца подбираются при температуре воздуха в мастерской 20 градусов в зависимости от размерной группы поршня.

Ремонт шатунов

В основном изготавливают шатуны из стали 40Г, 40Х или ст45, характерными дефектами считаются:

  • выработка металла посадочных мест;
  • износ отверстий;
  • изменение геометрии (скручивание и изгиб).

Выбраковывают кинематический элемент механизма при аварийном изгибе, поломке и раскрытии трещин. В остальных случаях изгибы и скручивание устраняют при нагреве до 500 градусов для снятия внутренних напряжений. Посадочные поверхности фрезеруются, затем шлифуются до следующего ремразмера.

После чего, работа кривошипно шатунного механизма вновь удовлетворяет требованиям регламента ГОСТ. Запрещено удалять слой металла больше 0,2 – 0,4 мм для дизелей, карбюраторных ДВС, соответственно. В противном случае нарушается кинематическая схема узла.

Реставрация коленвала

Основными нюансами ремонта коленчатого вала являются:

  • деталь изготавливается из магниевого чугуна высокопрочного, сталей ДР-У, 50Т, 40Х или ст45;
  • основными дефектами становятся изгиб и выработка стали посадочных мест;
  • реже изнашиваются шпоночные канавки, повреждаются резьбы, раскрываются трещины;
  • ремонтопригодной считается сборка кривошипно шатунного механизма с выработкой посадочных поверхностей и поврежденными резьбами;
  • трещины более 3 мм приводят к отбраковке коленвала.

После промывки масляных каналов и наружных поверхностей изделие исследуется дефектоскопом. Выработку восстанавливают наплавлением Св-18ХГСА проволоки с проточкой под ремонтные параметры. Шпоночные канавки фрезеруют с заданной чистотой обработки. При этом должна соблюдаться схема установки шестеренок.

После шлифовки коленвал балансируют на динамической установке БМ-У4 либо КИ-4274.

Таким образом, кривошипно шатунный механизм КШМ проще и дешевле поддерживать в работоспособном состоянии. Для этого нужно своевременно проходить ТО и обращаться в сервис к специалистам при малейшем постороннем звуке в блоке цилиндров. В этом случае, даже капремонт обойдется дешевле.

Что такое КШМ и для чего нужен кривошипно-шатунный механизм?

Если есть что-то, что прочно ассоциируется с любым автомобилем, это механизм двигателя. Как ни странно, принцип его действия мало изменился с тех пор, как 120 лет назад Карл Бенц запатентовал свой первый автомобиль. Система усложнялась, обрастала сложной электроникой, совершенствовалась, но кривошипно-шатунный механизм (КШМ) остался самым узнаваемым “портретом” любого мотора.

Что такое КШМ и для чего он нужен?

Двигатель в процессе работы должен давать какое-то постоянное движение, и удобней всего, чтобы это было равномерное вращение. Однако силовая часть (цилиндро-поршневая группа, ЦПГ) вырабатывает поступательное движение. Значит, нужно сделать так, чтобы один тип движения преобразовался в другой, причем с наименьшими потерями. Вот для этого и был создан кривошипно-шатунный механизм.
По сути, КШМ – это устройство для получения и преобразования энергии и передачи ее дальше, другим узлам, которые уже эту энергию используют.

Устройство КШМ

Строго говоря, КШМ автомобиля состоит из самого кривошипа, шатунов и поршней. Однако говорить о части, не рассказав о целостной конструкции, было бы в корне неправильно. Поэтому схема и назначение КШП и смежных элементов будет рассматриваться в комплексе.

Устройство КШМ: (1 — коренной подшипник на коренной шейке; 2 — шатунный подшипник на шатунной шейке; 3 — шатун; 4 — поршневой палец; 5 — поршневые кольца; 6 — поршень; 7 — цилиндр; 8 — маховик; 9 — противовес; 10 — коленчатый вал.)

  1. Блок цилиндров – это начало всего движения в моторе. Его составляющие – поршни, цилиндры и гильзы цилиндров, в которых эти поршни движутся;
  2. Шатуны – это соединительные элементы между поршнями и коленвалом. По сути, шатун представляет собой прочную металлическую перемычку, которая одной стороной крепится к поршню с помощью шатунного пальца, а другой фиксируется на шейке коленвала. Благодаря пальцевому соединению поршень может двигаться относительно цилиндра в одной плоскости. Точно так же шатун охватывает посадочное место коленвала – шатунную шейку, и это крепление позволяет ему двигаться в той же плоскости, что и соединение с поршнем;
  3. Коленвал – коленчатый вал вращения, ось которого проходит через носок вала, коренные (опорные) шейки и фланец маховика. А вот шатунные шейки выходят за ось вала, и благодаря этому при его вращении описывают окружность;
  4. Маховик – обязательный элемент механизма, накапливающий инерцию вращения, благодаря которой двигатель работает ровней и не останавливается в “мертвой точке”.

Эти и другие элементы КШМ можно условно разделить на подвижные, те, что выполняют непосредственную работу, и неподвижные вспомогательные элементы.

Подвижная (рабочая) группа КШМ

Как понятно из названия, к подвижной группе относятся элементы, которые активно задействованы в работе двигателя.

    Поршень. При работе двигателя поршень перемещается в гильзе цилиндра под действием выталкивающей силы при сгорании топлива – с одной стороны, и поворотом коленвала – с другой. Для уплотнения зазора между ним и цилиндром на боковой поверхности поршня находятся поршневые кольца (компрессионные и маслосъемные), которые герметизируют промежуток и препятствуют потере мощности во время сгорания топлива.

Устройство поршневой группы: (1 — масляно-охлаждающий канал; 2 — камера сгорания в днище поршня; 3 — днище поршня; 4 — канавка первого компрессионного кольца; 5 — первое (верхнее) компрессионное кольцо; 6 — второе (нижнее) компрессионное кольцо; 7 — маслосъемное кольцо; 8 — масляная форсунка; 9 — отверстие в головке шатуна для подвода масла к поршневому пальцу; 10 — шатун; 11 — поршневой палец; 12 — стопорное кольцо поршневого пальца; 13 и 14 — перегородки поршневых колец; 15 — жаровой пояс.)
Шатун. Это соединительный элемент между поршнем и коленвалом. Верхней головкой шатун крепится к поршню с помощью пальца. Нижняя головка имеет съемную часть, так что шатун можно надеть на шейку коленвала. Для уменьшения трения между шейкой коленвала и головкой шатуна ставятся шатунные вкладыши – подшипники скольжения в виде двух пластин, изогнутых полукругом.

Устройство шатуна
Коленвал. Это центральная часть двигателя, без которой сложно представить себе его принцип работы. Основной его частью является ось вращения, которая одновременно служит опорой для коленвала в блоке цилиндров. Выступающие за ось вращения элементы предназначены для присоединения к шатунам: когда шатун движется вниз, коленвал позволяет ему описать нижней частью окружность одновременно с движением поршня. Так же, как и в случае с шатунами, опорные шейки коленвала лежат на подшипниках скольжения – вкладышах.

Устройство коленвала

  • Маховик. Он крепится к фланцу на торцевой части коленвала. Маховик вращается вместе с валом двигателя и частично демпфирует неизбежные в любом ДВС рывковые нагрузки. Но основная задача маховика – раскручивать коленвал (а с ним и цилиндро-поршневую группу), чтобы поршни не замерли в “мертвой точке”. Таким образом, часть мощности двигателя расходуется на поддержку вращения маховика.
  • Устройство маховика

    Неподвижная группа КШМ

    Неподвижной группой можно назвать внешнюю часть двигателя, в которой находится КШП.

      Блок цилиндров. По сути, это корпус, в котором располагаются непосредственно цилиндры, каналы системы охлаждения, посадочные места распредвала, коленвала и т.д. Он может выполняться из чугуна или алюминиевого сплава, и сегодня производители всё чаще используют алюминий, чтобы облегчить конструкцию. Для этой же цели вместо сплошного литья используются ребра жесткости, которые облегчают конструкцию без потери прочности. На боковых сторонах блока цилиндров располагаются посадочные места для вспомогательных механизмов двигателя.

    Блок цилиндров

  • Головка блока цилиндров (ГБЦ). Устанавливается на блок цилиндров и закрывает его сверху. В ГБЦ предусмотрены отверстия для клапанов, впускного и выпускного коллекторов, крепления распредвала (одного или больше), крепления для других элементов двигателя. К ГБЦ, снизу, крепится прокладка (1) — пластина, которая герметизирует стык между блоком цилиндров и ГБЦ. В ней предусмотрены отверстия для цилиндров и крепежных болтов. А сверху — клапанная крышка (5), — ею закрывается ГБЦ сверху, когда двигатель собран и готов к запуску. Прокладка клапанной крышки. Это тонкая пластина, которая укладывается по периметру ГБЦ и герметизирует стык.
  • Устройство ГБЦ: (1 — прокладка ГБЦ; 2 — ГБЦ; 3 — сальник; 4 — прокладка крышки ГБЦ; 5 — крышка клапанная; 6- прижимная пластина; 7 — пробка маслозаливной горловины; 8 — прокладка пробки; 9 — направляющая втулка клапана; 10 — установочная втулка; 11 — болт крепления головки блока.)

    Принцип работы КШМ

    Работа механизма двигателя основана на энергии расширения при сгорании топливно-воздушной смеси. Именно эти “микровзрывы” являются движущей силой, которую кривошипно-шатунный механизм переводит в удобную форму. На видео, ниже, подробно описанный принцип работы КШМ в 3Д анимайии.

    Принцип работы КШМ:

    1. В цилиндрах двигателя сгорает распыленное и смешанное с воздухом топливо. Такая дисперсия предполагает не медленное горение, а мгновенное, благодаря чему воздух в цилиндре резко расширяется.
    2. Поршень, который в момент начала горения топлива находится в верхней точке, резко опускается вниз. Это прямолинейное движение поршня в цилиндре.
    3. Шатун соединен с поршнем и коленвалом так, что может двигаться (отклоняться) в одной плоскости. Поршень толкает шатун, который надет на шейку коленвала. Благодаря подвижному соединению, импульс от поршня через шатун передается на коленвал по касательной, то есть вал делает поворот.
    4. Поскольку все поршни по очереди толкают коленвал по тому же принципу, их возвратно-поступательное движение переходит во вращение коленвала.
    5. Маховик добавляет импульс вращения, когда поршень находится в «мертвых» точках.

    Интересно, что для старта двигателя нужно сначала раскрутить маховик. Для этой цели нужен стартер, который сцепляется с зубчатым венцом маховика и раскручивает его, пока мотор не заведется. Закон сохранения энергии в действии.

    Остальные элементы двигателя: клапаны, распредвалы, толкатели, система охлаждения, система смазки, ГРМ и прочие – необходимые детали и узлы для обеспечения работы КШМ.

    Основные неисправности

    Учитывая нагрузки, как механические, так и химические, и температурные, кривошипно-шатунный механизм подвержен различным проблемам. Избежать неприятностей с КШП (а значит, и с двигателем) помогает грамотное обслуживание, но всё равно от поломок никто не застрахован.

    Стук в двигателе.

    Один из самых страшных звуков, когда в моторе вдруг появляется странный стук и прочие посторонние шумы. Это всегда признак проблем: если что-то начало стучать, значит, с ним проблема. Поскольку в двигателе элементы подогнаны с микронной точностью, стук свидетельствует об износе. Придется разбирать двигатель, смотреть, что стучало, и менять изношенную деталь.

    Читать еще:  Схема подключения и распиновка кнопки стеклоподъемников ВАЗ

    Основной причиной износа чаще всего становится некачественное ТО двигателя. Моторное масло имеет свой ресурс, и его регулярная замена архиважна. То же относится и к фильтрам. Твердые частички, даже мельчайшие, постепенно изнашивают тонко пригнанные детали, образуют задиры и выработку.

    Стук может говорить и об износе подшипников (вкладышей). Они также страдают от недостатка смазки, поскольку именно на вкладыши приходится огромная нагрузка.

    Снижение мощности.
    Потеря мощности двигателя может говорить о залегании поршневых колец. В этом случае кольца не выполняют свою функцию, в камере сгорания остается моторное масло, а продукты сгорания прорываются в двигатель. Прорыв газов говорит и о пустой растрате энергии, и это чувствует автовладелец как снижение динамических характеристик. Продолжительная работа в такой ситуации может только ухудшить состояние двигателя и довести стандартную, в общем-то, проблему до капремонта двигателя.

    Проверить состояние мотора можно самостоятельно, измерив компрессию в цилиндрах. Если она ниже нормативной для данной модификации двигателя, значит, предстоит ремонт двигателя.

    Повышенный расход масла.
    Если двигатель начал “жрать” масло, это явный признак залегания поршневых колец или других проблем с цилиндро-поршневой группой. Масло сгорает вместе с топливом, из выхлопной трубы идет черный дым, температура в камере сгорания превышает расчетную, и это не добавляет двигателю здоровья. В некоторых случаях может помочь очистка без демонтажа двигателя, но в большинстве случаев предстоит разборка и дефектовка двигателя.

    Нагар.
    Отложения на поршнях, клапанах и свечах зажигания говорят о том, что с двигателем есть проблема. Если топливо не сгорает полностью, нужно искать причину неисправности и устранять ее. В противном случае мотору грозит перегрев из-за ухудшения теплопроводности поверхностей со слоем нагара.

    Белый дым из выхлопной трубы.
    Появляется, когда в камеру сгорания попадает антифриз. Причиной чаще всего бывает износ прокладки ГБЦ или микротрещины в рубашке охлаждения двигателя, и для устранения проблемы необходима ее замена.

    Медлить в этой ситуации нежелательно: маленькая протечка может обернуться гидроударом. Камера сгорания наполняется жидкостью, поршень движется вверх, но жидкость, в отличие от воздуха, не сжимается, и получается эффект удара о твердую поверхность. Последствия такой катастрофы могут быть любые, вплоть до “кулака дружбы” и продажи машины на запчасти.

    Заключение

    Несмотря на высокие нагрузки, критические условия работы и даже небрежность владельцев, кривошипно-шатунный механизм отличается завидной живучестью. Вывести его из строя можно неправильным обслуживанием, нештатными нагрузками, поломкой смежных элементов. Да, двигатель почти всегда можно починить, но эта услуга обойдется в разы дороже, чем просто грамотное регулярное ТО. Недаром же есть двигатели “миллионники”, которые способны служить десятилетиями, не доставляя проблем владельцу машины.

    Устройство и принцип работы кривошипно-шатунного механизма двигателя

    Кривошипно-шатунный механизм двигателя преобразует возвратно-поступательное движение поршней (от энергии сгорания топливной смеси) во вращательное движение коленчатого вала и наоборот. Это технически сложный механизм, составляющий основу ДВС. В статье подробно рассмотрим устройство и особенности работы КШМ.

    Краткая история возникновения

    Первые свидетельства о применении кривошипа найдены ещё в III веке нашей эры, в Римской Империи и Византии в VI веке нашей эры. Ярким примером является пилорама из Иераполиса, на которой был применен коленчатый вал. Металлический кривошип был найден в римском городе Августа-Раурика на территории современной Швейцарии. Как бы то ни было, запатентовал изобретение некий Джеймс Пакард в 1780 году, хотя свидетельства его изобретения были найдены еще в древности.

    Кривошипно-шатунный механизм двигателя

    Подвижные и неподвижные части КШМ

    Составные части КШМ условно делят на подвижные и неподвижные компоненты. К подвижным частям относятся:

    • поршни и поршневые кольца;
    • шатуны;
    • поршневые пальцы;
    • коленчатый вал;
    • маховик.

    Неподвижные части КШМ выполняют функцию основы, крепежей и направляющих. К ним относятся:

    • блок цилиндров;
    • головка блока цилиндров;
    • картер;
    • поддон картера;
    • крепежные детали и подшипники.

    Картер и поддон картера двигателя

    Картер – это нижняя часть двигателя, где располагаются опоры и каналы смазочной системы для коленчатого вала. В картере происходит движение шатунов и вращение коленвала. Поддон картера представляет собой резервуар с моторным маслом.

    Основа картера в работе подвергается постоянным тепловым и силовым нагрузкам. Поэтому для этой детали предъявляются особые требования по прочности и жесткости. Для его изготовления используют алюминиевые сплавы или чугун.

    Неподвижные части КШМ

    Картер двигателя крепится к блоку цилиндров. Вместе они составляют остов двигателя, основную часть его корпуса. В блоке располагаются непосредственно сами цилиндры. Сверху крепится головка блока ДВС. Вокруг цилиндров имеются полости для жидкостного охлаждения.

    Расположение и число цилиндров

    На сегодняшний день существуют следующие наиболее популярные схемы:

    • рядное четырех- или шестицилиндровое положение;
    • V-образное шестицилиндровое положение под углом 90°;
    • VR-образное положение под меньшим углом;
    • оппозитное положение (поршни двигаются навстречу друг другу с разных сторон);
    • W-образное положение с 12 цилиндрами.

    В простом рядном расположении цилиндры и поршни расположены в ряд перпендикулярно коленчатому валу. Такая схема наиболее простая и надежная.

    Головка блока цилиндров

    К блоку с помощью шпилек или болтов крепится головка блока цилиндров. Она накрывает цилиндры с поршнями сверху, образуя герметичную полость — камеру сгорания. Между блоком и головкой предусмотрена прокладка. Также в ГБЦ располагаются клапанный механизм и свечи зажигания.

    Цилиндры

    В цилиндрах двигателя непосредственно происходит движение поршней. От хода поршня и его длины зависит их размер. Цилиндры работают в условиях меняющегося давления и высоких температур. Во время работы стенки подвергаются непрерывному трению и температурам до 2500°C. К материалам и обработке цилиндров также предъявляются особые требования. Они изготавливаются из легированного чугуна, стали или алюминиевых сплавов. Поверхность деталей должна быть не только прочной, но и легко подвергаться обработке.

    Внешнюю рабочую поверхность называют зеркалом. Ее покрывают хромом и полируют до зеркальной поверхности, чтобы максимально снизить трение в условиях ограниченной смазки. Цилиндры отливаются вместе с блоком (цельные) или изготавливаются в виде съемных гильз.

    Кривошипно-шатунный механизм

    Основными рабочими компонентами КШМ являются коленчатый вал, поршни с шатунами и маховик.

    Поршень

    Движение поршня в цилиндре происходит в результате сгорания топливовоздушной смеси. Возникает давление, которое воздействует на днище поршня. В разных типах двигателей оно может отличаться по своей форме. В бензиновых изначально днище было плоским, затем стали применять вогнутые конструкции с проточками под клапаны. В дизельных моторах в камере сгорания сжимается изначально не топливо, а воздух. Поэтому днище поршня имеет также вогнутую форму, которая и образует камеру сгорания.

    Форма днища имеет большое значение для формирования правильного факела сгорания топливовоздушной смеси.

    Остальная часть поршня называется юбкой. Это своего рода направляющая, которая движется в цилиндре. Нижняя часть поршня или юбки сделана так, чтобы она не соприкасалась с шатуном во время его движения.

    Поршень и его элементы

    На боковой поверхности поршней выполнены канавки или проточки под поршневые кольца. Сверху располагаются два или три компрессионных кольца. Они необходимы для создания компрессии, то есть препятствуют проникновению газов между стенками цилиндра и поршнем. Кольца прижимаются к зеркалу, уменьшая зазор. Снизу расположен паз под маслосъёмное кольцо. Оно необходимо для снятия излишков масла со стенок цилиндра, чтобы то не проникало в камеру сгорания.

    Поршневые кольца, особенно компрессионные, работают при постоянных нагрузках и высокой температуре. Для их изготовления применяется высокопрочные материалы типа легированного чугуна, который покрывают пористым хромом.

    Поршневой палец и шатун

    Шатун крепится к поршню при помощи поршневого пальца. Он представляет собой цельную или полую деталь цилиндрической формы. Палец устанавливается в отверстие в поршне и в верхней головке шатуна.

    Существуют два типа крепления пальца:

    • с фиксированной посадкой;
    • с плавающей посадкой.

    Наиболее распространен так называемый «плавающий палец». Для его фиксации используются стопорные кольца. Фиксированный палец устанавливается с натягом. Как правило, используется тепловая посадка.

    Шатун двигателя

    Шатун, в свою очередь, соединяет коленчатый вал и поршень и создает вращательные движения. При этом возвратно-поступательные движения шатуна описывают восьмерку. Он состоит из нескольких элементов:

    • стержня или основы;
    • поршневой головки (верхней);
    • кривошипной головки (нижней).

    Для уменьшения трения и смазки соприкасающихся деталей в поршневой головке запрессовывается бронзовая втулка. Кривошипная головка выполнена разборной, чтобы обеспечить возможность сборки механизма. Детали точно подогнаны друг к другу и крепятся с помощью болтов и контргаек. Чтобы уменьшить трение, устанавливаются шатунные подшипники скольжения. Они выполнены в форме двух стальных вкладышей с замками. По масляным канавкам осуществляется подвод масла. Подшипники с высокой точностью подогнаны под размер соединения.

    Вопреки расхожему мнению, вкладыши удерживаются от проворота не за счет замков, а из-за возникающей силы трения между их внешней поверхностью и головкой шатуна. Поэтому при установке внешнюю часть подшипника скольжения нельзя смазывать маслом.

    Коленчатый вал

    Коленчатый вал является сложной по устройству и изготовлению деталью. Он принимает на себя крутящий момент, давление и другие нагрузки, поэтому выполнен из высокопрочной стали или чугуна. Коленвал передает вращение от поршней на трансмиссию и другие элементы автомобиля (например, приводной шкив).

    Устройство коленчатого вала

    Коленчатый вал состоит из нескольких основных элементов:

    • коренные шейки;
    • шатунные шейки;
    • противовесы;
    • щеки;
    • хвостовик;
    • фланец маховика.

    Конструкция коленвала во многом будет зависеть от количества цилиндров в двигателе. В простом рядном четырехцилиндровом двигателе на коленчатом валу имеются четыре шатунных шейки, на которых устанавливаются шатуны с поршнями. Пять коренных шеек расположены по центральной оси вала. Они устанавливаются в опоры блока цилиндров или картера на подшипники скольжения (вкладыши). Сверху коренные шейки закрываются крышками на болтах. Соединение образует П-образную форму.

    Специально обработанное место опоры под установку коренной шейки с вкладышем называется постелью.

    Коренные и шатунные шейки соединены так называемыми щеками. Противовесы обеспечивают гашение излишних колебаний и обеспечивают равномерное движение коленчатого вала.

    Устройство КШМ

    Шейки коленвала термически обработаны и отполированы, что обеспечивает высокую прочность и точность посадки. Коленчатый вал также имеет очень точную балансировку и центровку для равномерного распределения всех действующих на него сил. В районе центральной коренной шейки, по бокам от опоры, устанавливаются упорные полукольца. Они необходимы для компенсации осевых перемещений.

    На хвостовик коленвала крепятся шестерни (звездочки) привода ГРМ, а также приводной шкив навесного оборудования двигателя.

    Маховик

    На задней части вала имеется фланец, к которому крепится маховик. Это чугунная деталь, представляющая собой массивный диск. Благодаря своей массе маховик создает необходимую инерцию для работы КШМ, а также обеспечивает равномерную передачу крутящего момента на трансмиссию. На ободе маховика выполнен зубчатый венец для соединения с шестерней стартера. Именно маховик раскручивает коленвал и приводит в движение поршни в момент запуска двигателя.

    Кривошипно-шатунный механизм, конструкция и форма коленчатого вала долгие годы остаются неизменными. В основном происходят только небольшие конструктивные доработки, направленные на снижение веса, сил инерции и трения.

    Кривошипно-шатунный механизм

    Кривошипно-шатунный механизм (КШМ) воспринимает давление газов при рабочем ходе и преобразует возвратно-поступательное движение поршня во вращательное движение коленвала. КШМ состоит из блока цилиндров с головкой, поршней с кольцами, поршневых пальцев, шатунов, коленчатого вала, маховика и поддона картера.

    Устройство КШМ

    Блок цилиндров является основной деталью двигателя, к которой крепятся все механизмы и детали. Блоки цилиндров отливают из чугуна или алюминиевого сплава. В той же отливке выполнены картер и стенки рубашки охлаждения, окружающие цилиндры двигателя. В блок цилиндров устанавливают вставные гильзы. Гильзы бывают «мокрые» (охлаждаемые жидкостью) и «сухие». На многих современных двигателях применяются безгильзовые блоки. Внутренняя поверхность гильзы (цилиндра) служит направляющей для поршней.

    Блок цилиндров сверху закрывается одной или двумя (в V-образных двигателях) головками цилиндров из алюминиевого сплава. В головке блока цилиндров (ГБЦ) размещены камеры сгорания, в которых имеются резьбовые отверстия для свечей зажигания (в дизелях – для свечей накала). В головках ДВС с непосредственным впрыском также имеется отверстие для форсунок. Для охлаждения камер сгорания вокруг них выполнена специальная рубашка. На головке цилиндров закреплены детали газораспределительного механизма. В ГБЦ выполнены впускные и выпускные каналы и установлены вставные седла и направляющие втулки клапанов. Для создания герметичности между блоком и ГБЦ устанавливается прокладка, а крепление головки к блоку цилиндров осуществлено шпильками с гайками. Головка цилиндров сверху закрывается крышкой. Между ними устанавливается маслоустойчивая прокладка.

    Блок цилиндров Блок цилиндров в разрезе Головка блока цилиндров Детали КШМ

    Поршень воспринимает давление газов при рабочем такте и передает его через поршневой палец и шатун на коленчатый вал. Поршень представляет собой перевернутый цилиндрический стакан, отлитый из алюминиевого сплава. В верхней части поршня расположена головка с канавками, в которые вставляются поршневые кольца. Ниже головки выполнена юбка, направляющая движение поршня. В юбке поршня имеются приливы-бобышки с отверстиями для поршневого пальца.

    При работе двигателя поршень, нагреваясь, расширится и, если между ним и стенкой цилиндра не будет необходимого зазора, заклинится в цилиндре. Если же зазор будет слишком большим, то часть отработанных газов будет прорываться в картер. Это приведет к падению давления в цилиндре и уменьшению мощности двигателя. Поэтому головку поршня выполняют меньшего диаметра, чем юбку, а саму юбку в поперечном сечении изготавливают не цилиндрической формы, а в виде эллипса с большей осью в плоскости, перпендикулярной поршневому пальцу. На юбке поршня имеется разрез. Из-за овальной формы и разреза юбки предотвращается заклинивание поршня при работе прогретого двигателя. Общее устройство поршней принципиально одинаково, но их конструкции могут отличаться в зависимости от особенностей конкретного двигателя.

    Поршневые кольца подразделяются на компрессионные и маслосъемные. Компрессионные кольца уплотняют поршень в цилиндре и служат для уменьшения прорыва газов из цилиндров в картер, а маслосъемные снимают излишки масла со стенок цилиндров и предотвращают проникновение масла в камеру сгорания. Кольца, изготовленные из чугуна или стали, имеют разрез (замок). Количество колец в разных двигателях может быть разным.

    Поршневой палец шарнирно соединяет поршень с верхней головкой шатуна. Палец изготовлен в виде пустотелого цилиндрического стержня, наружная поверхность которого закалена токами высокой частоты. Осевое перемещение пальца в бобышках поршня ограничивается разрезными стальными кольцами.

    Шатун служит для соединения коленчатого вала с поршнем. Шатун состоит из стального стержня двутаврового сечения, верхней неразъемной и нижней разъемной головок. В верхней головке установлен поршневой палец, а нижняя головка крепится на шатунной шейке коленчатого вала. Для уменьшения трения в верхнюю головку шатуна запрессовывается втулка, а в нижнюю, состоящую из двух частей, устанавливаются тонкостенные вкладыши. Обе части нижней головки скрепляются двумя болтами с гайками. К головкам шатуна при работе двигателя подводится масло. В V-образных двигателях на одной шатунной шейке коленвала крепится два шатуна.

    Читать еще:  В дальний путь на метане

    Коленчатый вал изготавливается из стали или из высокопрочного чугуна. Он состоит из шатунных и коренных шлифованных шеек, щек и противовесов. Задняя часть вала выполнена в виде фланца, к которому болтами крепится маховик. На переднем конце коленчатого вала закрепляется ременной шкив и звездочка привода распредвала. В шкив может быть интегрирован гаситель крутильных колебаний. Наиболее распространенная конструкция представляет собой два металлических кольца, соединенных через упругую среду (резина-эластомер, вязкое масло).

    Количество и расположение шатунных шеек зависят от числа цилиндров и их расположения. Шатунные шейки коленвала многоцилиндрового двигателя выполнены в разных плоскостях, что необходимо для равномерного чередования рабочих тактов в разных цилиндрах. Коренные и шатунные шейки соединяются между собой щеками. Для уменьшения центробежных сил, создаваемых кривошипами, на коленчатом валу выполнены противовесы, а шатунные шейки сделаны полыми. Поверхность коренных и шатунных шеек закаливают токами высокой частоты. В шейках и щеках имеются каналы, предназначенные для подвода масла. В каждой шатунной шейке имеется полость, которая выполняет функцию грязеуловителя. В грязеуловители масло поступает от коренных шеек и при вращении вала частицы грязи, находящиеся в масле, под действием центробежных сил отделяются от масла и оседают на стенках. Очистка грязеуловителей осуществляется через завернутые в их торцы резьбовые пробки только при разборке двигателя. Перемещение вала в продольном направлении ограничивается упорными шайбами. В местах выхода коленчатого вала из картера двигателя имеются сальники и уплотнители, предотвращающие утечку масла.

    В работающем двигателе нагрузки на шатунные и коренные шейки коленчатого вала очень велики. Для уменьшения трения шейки вала расположены в подшипниках скольжения, которые выполнены в виде металлических вкладышей, покрытых антифрикционным слоем. Вкладыши состоят из двух половинок. Шатунные подшипники устанавливаются в нижней разъемной головке шатуна, а коренные – в блоке и крышке подшипника. Крышки коренных подшипников прикручиваются болтами к блоку цилиндров и стопорятся во избежание самоотвертывания. Чтобы вкладыши не провертывались, в них делают выступы, а в крышках, седлах и головках шатунов – соответствующие им уступы.

    Маховик уменьшает неравномерность работы двигателя, облегчает его пуск и способствует плавному троганию автомобиля с места. Маховик изготовлен в виде массивного чугунного диска и прикреплен к фланцу коленвала болтами с гайками. При изготовлении маховик балансируется вместе с коленчатым валом. Для того чтобы при разборке двигателя балансировка не нарушилась, маховик устанавливается на несимметрично расположенные штифты или болты. Таким образом исключается его неправильная установка. В некоторых двигателях для снижения крутильных колебаний, передаваемых на КПП, применяются двухмассовые маховики, представляющие собой два диска, упруго соединенные между собой. Диски могут смещаться относительно друг друга в радиальном направлении. На ободе маховика наносятся метки, по которым устанавливают поршень первого цилиндра в в.м.т. при установке зажигания или момента начала подачи топлива (для дизелей). Также на обод крепится зубчатый венец, предназначенный для зацепления с бендиксом стартера.

    Для уменьшения вибрации в рядных двигателях применяются балансирные валы, расположенные под коленчатым валом в масляном поддоне.

    Маховик Двухмассовый маховик Балансирные валы Поддон картера

    Картер двигателя отливается заодно с блоком цилиндров. К нему крепятся детали кривошипно-шатунного и газораспределительного механизмов. Для повышения жесткости внутри картера выполнены ребра, в которых расточены гнезда коренных подшипников коленчатого вала. Снизу картер закрывается поддоном, выштампованным из тонкого стального листа. Поддон используется как резервуар для масла и защищает детали двигателя от загрязнения. В нижней части поддона имеется пробка для слива моторного масла. Поддон крепится к картеру болтами. Для предотвращения утечки масла между ними устанавливается прокладка.

    Неисправности КШМ

    К признакам неисправности КШМ относятся: появление посторонних стуков и шумов, падение мощности двигателя, повышенный расход масла, перерасход топлива, появление дыма в отработанных газах.

    Стуки и шумы в двигателе возникают в результате износа его основных деталей и появления между сопряженными деталями увеличенных зазоров. При износе поршня и цилиндра, а также при увеличении зазора между ними возникает звонкий металлический стук, хорошо прослушиваемый при работе холодного двигателя. Резкий металлический стук на всех режимах работы двигателя свидетельствует об увеличении зазора между поршневым пальцем и втулкой верхней головки шатуна. Усиление стука при резком увеличении числа оборотов коленчатого вала свидетельствует об износе вкладышей коренных или шатунных подшипников, причем стук более глухого тона указывает на износ вкладышей коренных подшипников. При большом износе вкладышей возможно резкое падение давление масла. В этом случае эксплуатировать двигатель нельзя.

    Падение мощности двигателя возникает при износе или залегании в канавках поршневых колец, износе поршней и цилиндров, а также плохой затяжке головки цилиндров. Эти неисправности вызывают падение компрессии в цилиндре. Компрессию проверяют при помощи компрессометра на теплом двигателе. Для этого выкручивают все свечи, и на место одной из них устанавливают наконечник компрессометра. При полностью открытом дросселе прокручивают двигатель стартером в течение 2-3 секунд. Таким образом последовательно проверяют все цилиндры. Величина компрессии должна быть в пределах, указанных в технических данных двигателя. Разница в компрессии между отдельными цилиндрами не должна превышать 1 кГ/см2.

    Повышенный расход масла, перерасход топлива, появление дыма в отработанных газах (при нормальном уровне масла в картере) обычно появляются при залегании поршневых колец или износе колец и цилиндров. Залегание кольца можно устранить без разборки двигателя, залив в цилиндр через отверстие для свечи зажигания специальную жидкость.

    Отложение нагара на днищах поршней и камер сгорания снижает теплопроводность, что вызывает перегрев двигателя, падение мощности и повышение расхода топлива.

    Трещины в стенках рубашки охлаждения блока и головки блока цилиндров могут появиться в результате замерзания охлаждающей жидкости, заполнения системы охлаждения горячего двигателя холодной охлаждающей жидкостью или в результате перегрева двигателя. Через трещины в блоке цилиндров охлаждающая жидкость может попадать в цилиндры. При этом цвет выхлопных газов становится белым.

    Как работает и устроен кривошипно-шатунный механизм двигателя

    Двигатели внутреннего сгорания, используемые на автомобилях, функционируют за счет преобразования энергии, выделяемой при горении горючей смеси, в механическое действие – вращение. Это преобразование обеспечивается кривошипно-шатунным механизмом (КШМ), который является одним из ключевых в конструкции двигателя автомобиля.

    Устройство КШМ

    Кривошипно-шатунный механизм двигателя состоит из трех основных деталей:

    1. Цилиндро-поршневая группа (ЦПГ).
    2. Шатун.
    3. Коленчатый вал.

    Все эти компоненты размещаются в блоке цилиндров.

    Назначение ЦПГ — преобразование выделяемой при горении энергии в механическое действие – поступательное движение. Состоит ЦПГ из гильзы – неподвижной детали, посаженной в блок в блок цилиндров, и поршня, который перемещается внутри этой гильзы.

    После подачи внутрь гильзы топливовоздушной смеси, она воспламеняется (от внешнего источника в бензиновых моторах и за счет высокого давления в дизелях). Воспламенение сопровождается сильным повышением давления внутри гильзы. А поскольку поршень это подвижный элемент, то возникшее давление приводит к его перемещению (по сути, газы выталкивают его из гильзы). Получается, что выделяемая при горение энергия преобразуется в поступательное движение поршня.

    Для нормального сгорания смеси должны создаваться определенные условия – максимально возможная герметичность пространства перед поршнем, именуемое камерой сгорания (где происходит горение), источник воспламенения (в бензиновых моторах), подача горючей смеси и отвод продуктов горения.

    Герметичность пространства обеспечивается головкой блока, которая закрывает один торец гильзы и поршневыми кольцами, посаженными на поршень. Эти кольца тоже относятся к деталям ЦПГ.

    Шатун

    Следующий компонент КШМ – шатун. Он предназначен для связки поршня ЦПГ и коленчатого вала и передает механических действий между ними.

    Шатун представляет собой шток двутавровой формы поперечного сечения, что обеспечивает детали высокую устойчивость на изгиб. На концах штока имеются головки, благодаря которым шатун соединяется с поршнем и коленчатым валом.

    По сути, головки шатуна представляют собой проушины, через которые проходят валы обеспечивающие шарнирное (подвижное) соединение всех деталей. В месте соединения шатуна с поршнем, в качестве вала выступает поршневой палец (относится к ЦПГ), который проходит через бобышки поршня и головку шатуна. Поскольку поршневой палец извлекается, то верхняя головка шатуна – неразъемная.

    В месте соединения шатуна с коленвалом, в качестве вала выступают шатунные шейки последнего. Нижняя головка имеет разъемную конструкцию, что и позволяет закреплять шатун на коленчатом валу (снимаемая часть называется крышкой).

    Коленчатый вал

    Назначение коленчатого вала — это обеспечение второго этапа преобразования энергии. Коленвал превращает поступательное движение поршня в свое вращение. Этот элемент кривошипно-шатунного механизма имеет сложную геометрию.

    Состоит коленвал из шеек – коротких цилиндрических валов, соединенных в единую конструкцию. В коленвале используется два типа шеек – коренные и шатунные. Первые расположены на одной оси, они являются опорными и предназначены для подвижного закрепления коленчатого вала в блоке цилиндров.

    В блоке цилиндров коленчатый вал фиксируется специальными крышками. Для снижения трения в местах соединения коренных шеек с блоком цилиндров и шатунных с шатуном, используются подшипники трения.

    Шатунные шейки расположены на определенном боковом удалении от коренных и к ним нижней головкой крепится шатун.

    Коренные и шатунные шейки между собой соединяются щеками. В коленчатых валах дизелей к щекам дополнительно крепятся противовесы, предназначенные для снижения колебательных движений вала.

    Шатунные шейки вместе с щеками образуют так называемый кривошип, имеющий П-образную форму, который и преобразует поступательного движения во вращение коленчатого вала. За счет удаленного расположения шатунных шеек при вращении вала они движутся по кругу, а коренные — вращаются относительно своей оси.

    Количество шатунных шеек соответствует количеству цилиндров мотора, коренных же всегда на одну больше, что обеспечивает каждому кривошипу две опорных точки.

    На одном из концов коленчатого вала имеется фланец для крепления маховика – массивного элемента в виде диска. Основное его назначение: накапливание кинетической энергии за счет которой осуществляется обратная работа механизма – преобразование вращения в движение поршня. На втором конце вала расположены посадочные места под шестерни привода других систем и механизмов, а также отверстие для фиксации шкива привода навесного оборудования мотора.

    Принцип работы механизма

    Принцип работы кривошипно-шатунного механизма рассмотрим упрощенно на примере одноцилиндрового мотора. Такой двигатель включает в себя:

    • коленчатый вал с двумя коренными шейками и одним кривошипом;
    • шатун;
    • и комплект деталей ЦПГ, включающий в себя гильзу, поршень, поршневые кольца и палец.

    Воспламенение горючей смеси выполняется когда объем камеры сгорания минимальный, а обеспечивается это при максимальном поднятии вверх поршня внутри гильзы (верхняя мертвая точка – ВМТ). При таком положении кривошип тоже «смотрит» вверх. При сгорании выделяемая энергия толкает вниз поршень, это движение передается через шатун на кривошип, и он начинает двигаться по кругу вниз, при этом коренные шейки вращаются вокруг своей оси.

    При провороте кривошипа на 180 градусов поршень достигает нижней мертвой точки (НМТ). После ее достижения выполняется обратная работа механизма. За счет накопленной кинетической энергии маховик продолжает вращать коленвал, поэтому чему кривошип проворачивается и посредством шатуна толкает поршень вверх. Затем цикл полностью повторяется.

    Если рассмотреть проще, то один полуоборот коленвала осуществляется за счет выделенной при сгорании энергии, а второй – благодаря кинетической энергии, накопленной маховиком. Затем процесс повторяется вновь.

    Ещё кое-что полезное для Вас:

    Особенности работы двигателя. Такты

    Выше описана упрощенная схема работы КШМ. В действительности чтобы создать необходимые условия для нормального сгорания топливной смеси, требуется выполнение подготовительных этапов – заполнение камеры сгорания компонентами смеси, их сжатие и отвод продуктов горения. Эти этапы получили название «такты мотора» и всего их четыре – впуск, сжатие, рабочий ход, выпуск. Из них только рабочий ход выполняет полезную функцию (именно при нем энергия преобразуется в движение), а остальные такты – подготовительные. При этом выполнение каждого этапа сопровождается проворотом коленвала вокруг оси на 180 градусов.

    Конструкторами разработано два типа двигателей – 2-х и 4-тактный. В первом варианте такты совмещены (рабочий ход с выпуском, а впуск – со сжатием), поэтому в таких моторах полный рабочий цикл выполняется за один полный оборот коленвала.

    В 4-тактном двигателе каждый такт выполняется по отдельности, поэтому в таких моторах полный рабочий цикл выполняется за два оборота коленчатого вала, и только один полуоборот (на такте «рабочий ход») выполняется за счет выделенной при горении энергии, а остальные 1,5 оборота – благодаря энергии маховика.

    Основные неисправности и обслуживание КШМ

    Несмотря на то, что кривошипно-шатунный механизм работает в жестких условиях, эта составляющая двигателя достаточно надежная. При правильном проведении технического обслуживания, механизм работает долгий срок.

    При правильной эксплуатации двигателя ремонт кривошипно-шатунный механизма потребуется только из-за износа ряда составных деталей – поршневых колец, шеек коленчатого вала, подшипников скольжения.

    Поломки составных компонентов КШМ происходят в основном из-за нарушения правил эксплуатации силовой установки (постоянная работа на повышенных оборотах, чрезмерные нагрузки), невыполнения ТО, использования неподходящих горюче-смазочных материалов. Последствиями такого использования мотора могут быть:

    • залегание и разрушение колец;
    • прогорание поршня;
    • трещины стенок гильзы цилиндра;
    • изгиб шатуна;
    • разрыв коленчатого вала;
    • «наматывание» подшипников скольжения на шейки.

    Такие поломки КШМ очень серьезны, зачастую поврежденные элементы ремонту не подлежат их нужно только менять. В некоторых случаях поломки КШМ сопровождаются разрушениями иных элементов мотора, что приводит мотор в полную негодность без возможности восстановления.

    Чтобы кривошипно-шатунный механизм двигателя не стал причиной выхода из строя мотора, достаточно выполнять ряд правил:

    1. Не допускать длительной работы двигателя на повышенных оборотах и под большой нагрузкой.
    2. Своевременно менять моторное масло и использовать смазку, рекомендованную автопроизводителем.
    3. Использовать только качественное топливо.
    4. Проводить согласно регламенту замену воздушных фильтров.

    Не стоит забывать, что нормальное функционирование мотора зависит не только от КШМ, но и от смазки, охлаждения, питания, зажигания, ГРМ, которым также требуется своевременное обслуживание.

    Источники:

    http://autoleek.ru/dvigatel/dvs/ustrojstvo-kshm-i-cpg.html
    http://swapmotor.ru/ustrojstvo-dvigatelya/krivoshipno-shatunnyj-mehanizm-kshm.html
    http://vaznetaz.ru/krivoshipno-shatunnyj-mexanizm-kshm
    http://techautoport.ru/dvigatel/mehanicheskaya-chast/krivoshipno-shatunnyi-mehanizm.html
    http://avtonov.info/krivoshipno-shatunnyj-mehanizm
    http://avtomotoprof.ru/obsluzhivanie-i-uhod-za-avtomobilem/krivoshipno-shatunnyiy-mehanizm/

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    Статьи c упоминанием слов: