2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплоемкость при постоянном давлении

Учебники

Журнал «Квант»

Общие

Теплоемкости при постоянном давлении и постоянном объеме

При сообщении телу некоторого количества теплоты изменяется его температура (за исключением агрегатных превращений и вообще изотермических процессов). Характеристиками такого изменения являются различные теплоемкости: теплоемкость тела CT, удельная теплоемкость вещества c, молярная теплоемкость C.

Понятия теплоемкости тела и удельной теплоемкости рассмотрены тут.

Молярная теплоемкость C — величина, равная количеству теплоты, необходимому для нагревания 1 моль вещества на 1 К:

Единицей молярной теплоемкости в СИ является джоуль на моль-Кельвин (Дж/моль·К).

Удельная теплоемкость связана с молярной соотношением

В отличие от такой, например, характеристики вещества, как его молекулярная масса Mr удельная теплоемкость вещества не является неизменным параметром. Удельная теплоемкость может резко изменяться при переходе вещества из одного агрегатного состояния в другое. Так, вода в газообразном состоянии имеет удельную теплоемкость 2,2·10 3 Дж/кг·К а в жидком 4,19·10 3 Дж/кг·К .

Теплоемкость зависит и от условий, при которых происходит передача теплоты телу. Последнее особенно относится к газам. Например, при изотермическом расширении газа ему передается некоторое количество теплоты Q > 0, а ΔΤ = 0. Следовательно, удельная теплоемкость газа при изотермическом процессе

При адиабатном сжатии (расширении) газ не получает теплоты и не передает ее окружающим телам (Q = 0), а температура газа изменяется (ΔΤ ≠ 0). Следовательно, удельная теплоемкость газа при адиабатном процессе

Наибольший интерес представляет теплоемкость для случаев, когда нагревание происходит при постоянном объеме или при постоянном давлении. В первом случае теплоемкость называется теплоемкостью при постоянном объеме или изохорной теплоемкостью (cV, CV), во втором — теплоемкостью при постоянном давлении или изобарной теплоемкостью (cp, Cp).

Если объем не изменяется (ΔV = 0), то работа, совершенная газом, так же равна нулю (А = 0). Согласно первому закону термодинамики

Delta U = C_ cdot Delta T = c_V m Delta T . qquad (2))

Следовательно, теплоемкость при постоянном объеме равна изменению внутренней энергии газа при изменении температуры на 1 К.

Если газ идеальный, то в формуле (2)

Delta U = frac i2 frac mM R Delta T .)

Тогда молярная теплоемкость при постоянном объеме (

Delta U_M = frac i2 R Delta T) — изменение внутренней энергии 1 моль газа. Из этих равенств теплоемкость газа при постоянном объеме — (

C_ = frac i2 frac mM R); молярная теплоемкость газа при постоянном объеме — (

Если газ нагревается при постоянном давлении, то согласно первому закону термодинамики

A = p Delta V = frac mM R Delta T).

Тогда теплоемкость газа при постоянном давлении

C_ = frac = frac + frac mM R = C_ + frac mM R = frac frac mM R .)

Молярная теплоемкость при постоянном давлении:

C_p = C_V + R) — уравнение Майера; (

C_p = frac i2 R + R = frac R .)

Таким образом, теплоемкость при постоянном давлении всегда больше теплоемкости при постоянном объеме. Их отношение равно

где γ — показатель адиабаты (коэффициент Пуассона).

Из-за малости величины коэффициента объемного расширения твердых и жидких тел работой, совершаемой ими при нагревании при постоянном давлении, можно пренебречь и считать, что теплоемкости при постоянном объеме и постоянном давлении практически совпадают. Поэтому теплоемкость твердых и жидких тел при заданной температуре может считаться вполне определенной величиной.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 159-161.

Теплоемкость при постоянном давлении

Теплоёмкость тела характеризуется количеством теплоты, необходимой для нагревания этого тела на один градус:

Однако, теплоёмкость – величина неопределённая, поэтому пользуются понятиями удельной и молярной теплоёмкости.

Удельная теплоёмкостьуд) есть количество теплоты, необходимое для нагревания единицы массы вещества на 1 градус [Cуд] = Дж/К.

Для газов удобно пользоваться молярной теплоемкостью количество теплоты, необходимое для нагревания 1 моля газа на 1 градус:

Из п. 1.2 известно, что молярная масса – масса одного моля:

Теплоёмкость термодинамической системы зависит от того, как изменяется состояние системы при нагревании.

Если газ нагревать при постоянном объёме, то всё подводимое тепло идёт на нагревание газа, то есть изменение его внутренней энергии. Теплоёмкость при этом обозначается СV.

СР – теплоемкость при постоянном давлении. Если нагревать газ при постоянном давлении Р в сосуде с поршнем, то поршень поднимется на некоторую высоту h, то есть газ совершит работу (рис. 4.2).

Итак, проводимое тепло и теплоёмкость зависят от того, каким путём осуществляется передача тепла. Значит, Q и С не являются функциями состояния.

Величины СР и СV оказываются связанными простыми соотношениями. Найдём их.

Пусть мы нагреваем один моль идеального газа при постоянном объёме(dA = 0). Тогда первое начало термодинамики запишем в виде:

Теплоёмкость идеального газа

В случае, если результатом теплообмена становится передача телу некоего количества теплоты Q , то его температура и внутренняя энергия претерпевают изменения.

Необходимое для нагревания 1 к г вещества на 1 К количество теплоты Q носит название удельной теплоемкости вещества c , а ее формула выглядит следующим образом:

В большом количестве ситуаций удобной для использования является молярная теплоемкость C :

C = M · c , где M представляет собой молярную массу вещества.

Теплоемкость, полученная таким способом, не является однозначной характеристикой вещества. Исходя из первого закона термодинамики, можно сказать, что изменение внутренней энергии тела зависимо не только от количества полученной теплоты, но и от величины совершенной телом работы. В разных условиях осуществления процесса теплопередачи тело может совершать различную работу. Таким образом, переданное телу одинаковое количество теплоты способно провоцировать изменения его внутренней энергии и, соответственно, температуры.

Подобной неоднозначностью при определении теплоемкости характеризуются только газообразные вещества. Объем в процессе нагрева практически не меняет своей величины, что сводит работу расширения к нулю. По этой причине вся полученная телом теплота уходит на изменение его внутренней энергии. Газ в процессе теплопередачи может значительно менять свой объем и совершать работу, чем отличается от твердых тел и жидкостей. Таким образом, теплоемкость газообразного вещества имеет зависимость от характера термодинамического процесса.

Читать еще:  Инструкции к автосигнализациям StarLine

Изопроцессы в газах

Чаще всего рассматриваются два значения теплоемкости газов:

  • C V являющаяся молярной теплоемкостью в изохорном процессе ( V = c o n s t ) ;
  • C p представляющая собой молярную теплоемкость в изобарном процессе ( p = c o n s t ) .

При условии постоянного объема газ не совершает работы: A = 0 . Исходя из первого закона термодинамики для 1 м о л я газа, можно сказать, что справедливым является следующее выражение:

Q V = C V ∆ T = ∆ U .

Изменение величины Δ U внутренней энергии газа прямо пропорционально изменению значения Δ T его температуры.

В условиях процесса при постоянном давлении первый закон термодинамики дает такую формулу:

Q p = ∆ U + p ( V 2 — V 1 ) = C V ∆ T + p V .

В котором Δ V является изменением объема 1 м о л я идеального газа при изменении его температуры на Δ T . Таким образом, можно заявить, что:

C p = Q p ∆ T = C V + p ∆ V ∆ T .

Из уравнения состояния идеального газа, записанного для 1 м о л я , может выражаться отношение Δ V Δ T :

В котором R представляет собой универсальную газовую постоянную. При условии постоянства давления p = c o n s t , можно записать следующее: p ∆ V = R ∆ T или ∆ V ∆ T = R p .

Из этого следует, что выражающее связь между молярными теплоемкостями C p и C V соотношение имеет вид (формула Майера):

В процессе с неизменным давлением молярная теплоемкость C p газа всегда превышает молярную теплоемкость C V в процессе с не подверженным изменениям объемом, что демонстрируется на рисунке 3 . 10 . 1 .

Рисунок 3 . 10 . 1 . Два возможных процесса нагревания газа на Δ T = T 2 – T 1 . При p = c o n s t газ совершает работу A = p 1 ( V 2 – V 1 ) . Поэтому C p > C V .

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом занимает важное место в термодинамике и обозначается в виде греческой буквы γ .

Данное отношение включено в формулу для адиабатического процесса.

Между двумя изотермами, обладающими температурами T 1 и T 2 на диаграмме ( p , V ) реальны различные варианты перехода. Так как для всех подобных переходов изменение величины температуры Δ T = T 2 – T 1 является одним и тем же, выходит, что изменение значения
Δ U внутренней энергии тоже одинаково. С другой стороны, совершенные при этом работы A и количества теплоты Q , полученные в результате теплообмена, выйдут разными для различных путей перехода. Из этого следует, что газа имеет относительно приближенное к бесконечности число теплоемкостей. C p и C V представляют собой частные, однако, очень важные для теории газов, значения теплоемкостей.

Рисунок 3 . 10 . 2 . Модель теплоемкости идеального газа.

Термодинамические процессы, в которых теплоемкость газа не подвергается изменениям, носят название политропических.

Каждый изопроцесс являются политропическим. В изотермическом процессе Δ T = 0 , из-за чего C T = ∞ . В адиабатическом процессе Δ Q = 0 , выходит, что C а д = 0 .

Стоит обратить внимание на то, что «теплоемкость» и «количество теплоты» являются крайне неудачными терминами, доставшимися современной науке в качестве наследства теории теплорода, которая господствовала в XVIII веке.

Данная теория представляла теплоту в виде содержащегося в телах особого невесомого вещества. Считалось, что оно не подвержено уничтожению и не может быть созданным. Явление нагрева объясняли повышением, а охлаждение – понижением содержания в телах теплорода. Однако теория теплорода оказалась несостоятельной, так как не смогла дать ответа на вопрос, почему одинаковое изменение внутренней энергии тела возможно получить, приводя ему разное количество теплоты в зависимости от совершаемой им работы. По этой причине утверждение, что в данном теле содержится некоторый запас теплорода лишено смысла.

Молекулярно-кинетическая теория

В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией E → поступательного движения молекул и абсолютной температурой T :

Внутренняя энергия 1 м о л я идеального газа эквивалентна произведению E → на число Авогадро N А :

U = 3 2 k N A T = 3 2 R T .

При условии изменения температуры на величину Δ T внутренняя энергия изменяется на величину:

U = 3 2 R ∆ T = C V ∆ T .

Коэффициент пропорциональности между Δ U и Δ T эквивалентен теплоемкости C V в условиях постоянного давления:

C V = 3 2 R = 12 , 47 Д Ж / м о л ь · К.

Данное выражение подтверждается экспериментами с газами, которые состоят из одноатомных молекул вроде гелия, неона или аргона. При этом для двухатомных (водород, азот) и многоатомных (углекислый газ) газов такое соотношение не согласуется с полученными в результате опытов данными. Причина этого расхождения заключается в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать энергию как поступательного, так и вращательного их движения.

Рисунок 3 . 10 . 3 . Модель двухатомной молекулы. Точка O совпадает с центром масс молекулы.

Рисунок 3 . 10 . 3 иллюстрирует модель двухатомной молекулы. Молекула имеет возможность производить пять независимых типов движений: три поступательных движения вдоль осей X , Y , Z и два вращения относительно осей X и Y .

Опытным путем выяснено, что вращение относительно оси Z , на которой лежат центры обоих атомов, может быть возбуждено только при очень высоких значениях температуры. В условиях обычных температур вращение вокруг оси Z не происходит.

Каждое независимое движение в молекуле носит название степени свободы.

Выходит, что одноатомная молекула обладает 3 поступательными степенями свободы, «жесткая» двухатомная молекула 5 степенями, то есть 3 поступательными и 2 вращательными, а многоатомная молекула 6 степенями свободы, из которых 3 приходятся на поступательные и 3 на вращательные.

В классической статистической физике доказывается теорема о равномерном распределении энергии по степеням свободы:

Если система молекул находится в тепловом равновесии при температуре T , то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна 1 2 k T .

Из данной теоремы следует, что для молярных теплоемкостей газа C p и C V и их отношения
γ справедлива запись в следующем виде:

C V = i 2 R , C p = C v + R = i + 2 2 R , γ = C p C V = i + 2 i ,

где i представляет собой количество степеней свободы газа.

Для газа, состоящего из одноатомных молекул ( i = 3 )

C V = 3 2 R , C p = C v + R = 5 2 R , γ = C p C V = 5 3 = 1 , 66 .

Для газа, состоящего из двухатомных молекул ( i = 5 )

C V = 5 2 R , C p = C v + R = 7 2 R , γ = C p C V = 7 5 = 1 , 4 .

Для газа, состоящего из многоатомных молекул ( i = 6 )

C V = 3 R , C p = C v + R = 4 R , γ = C p C V = 4 3 = 1 , 33 .

В обычных условиях экспериментально измеренные теплоемкости многих газов неплохо согласуются с приведенными выражениями, но в целом классическая теория теплоемкости газов вполне удовлетворительной не является. Существует колоссальное число примеров со значительной разницей между результатами эксперимента и теорией. Данный факт объясняется тем, что классическая теория не может полностью учесть, связанную с внутренними движениями в молекуле энергию.

Теорема о равномерном распределении энергии по степеням свободы может быть применена и по отношению к тепловому движению частиц в твердом теле. Входящие в состав кристаллической решетки атомы колеблются около положений равновесия. Энергия данных колебаний представляет собой внутреннюю энергию твердого тела. Каждый конкретный атом может колебаться в кристаллической решетке в трех взаимно перпендикулярных направлениях. Выходит, что каждый атом имеет 3 колебательные степени свободы. При условии гармонических колебаний средняя кинетическая энергия эквивалентна средней потенциальной энергии. По этой причине в соответствии с теоремой о равномерном распределении на каждую колебательную степень свободы приходится средняя энергия k T , а на один атом – 3 k T .

Читать еще:  Дом на колесах

Внутренняя энергия 1 м о л я твердого вещества равна следующему выражению:

U = 3 R N A k t = 3 R t .

Следовательно, молярная теплоемкость вещества в твердом состоянии равняется:

С = 3 R = 25 , 12 Д ж / м о л ь · К .

Данное выражение носит название закона Дюлонга–Пти. Для твердых тел почти нет различия между C p и C V по причине пренебрежительно малой работы при сжатии или расширении.

Опыт показывает, что молярная теплоемкость у многих твердых тел (химических элементов) при обычных температурах на самом деле близка к 3 R . При этом, в условиях низких температур заметны довольно сильные расхождения между теорией и экспериментом. Таким образом, гипотеза о равномерном распределении энергии по степеням свободы может считаться лишь приближением. Заметная в опыте зависимость теплоемкости от температуры объясняется только при условии использования квантовых представлений.

Теплоемкость при постоянном объеме и теплоемкость при постоянном давлении

Пусть нагревание происходит в условиях, когда объем остается постоянным
(V = const). Соответствующая молярная теплоемкость называется теплоемкостью при постоянном объеме, или изохорической теплоемкостью, и обозначается CV:

(82)

Так как теплота при этом тратится только на изменение внутренней энергии dU, то δQ = dU и

(83)

Отсюда dU = CV dT. Уравнение закона сохранения энергии (80) можно теперь переписать в виде

Следовательно, подводимое к телу тепло расходуется на изменение температуры dT (изменение внутренней энергии) и изменение объема dV (с этим связана внешняя механическая работа).

Если при нагревании постоянным остается давление, то теплоемкость называется теплоемкостью при постоянном давлении Ср (ее можно также называть изобарической теплоемкостью):

.

Пользуясь результатами кинетической теории газов, легко вычислить молярные теплоемкости идеального газа.

Для идеального одноатомного газа, как мы видели, внутренняя энергия моля равна U = RT; значит,

. (85)

Если разделить это значение молярной теплоемкости на число молекул в грамм-молекуле, т. е на число Авогадро, то получим тот средний вклад, который каждая молекула вносит в теплоемкость газа:

.

Следовательно, при повышении температуры на 1 К энергия каждой молекулы в среднем возрастает на джоулей.

Теплоемкость Cp идеального газа при постоянном давлении больше теплоемкости CV при постоянном объеме на величину работы, которую совершает моль газа, расширяясь при нагревании на 1К. Работа эта равна . Таким образом,

. (86)

Но для моля идеального газа pV = RT, поэтому и

. (87)

Из формул (85) и (87) видно, что теплоемкость при постоянном давлении превосходит теплоемкость при постоянном объеме на величину R:

Уравнение (88) называетсяуравнением Роберта Майера. Из него вытекает физический смысл газовой постоянной:

Теплоёмкость идеального газа при постоянном давлении и при постоянном объёме.

В молекулярно-кинетической теории газов показывается, что молярная теплоёмкость идеального газа с i степенями свободы при постоянном объёме (для одного моля идеального газа) равна:

где R ≈ 8,31 Дж/(моль·К) — универсальная газовая постоянная.

А при постоянном давлении

Переход вещества из одного агрегатного состояния в другое сопровождается скачкообразным изменением теплоёмкости в конкретной для каждого вещества температурной точке превращения — температура плавления (переход твёрдого тела в жидкость), температура кипения (переход жидкости в газ) и, соответственно, температуры обратных превращений: замерзания и конденсации.

Удельные теплоёмкости многих веществ приведены в справочниках обычно для процесса при постоянном давлении. К примеру, удельная теплоёмкость жидкой воды при нормальных условиях — 4200 Дж/(кг·К); льда — 2100 Дж/(кг·К).

Уравнение Майера.

Для идеального газа справедливо Уравнение Майера:

,

где — универсальная газовая постоянная, — молярная теплоёмкость при постоянном давлении, — молярная теплоёмкость при постоянном объёме.

Уравнение Майера вытекает из первого начала термодинамики, примененного к изобарному процессу в идеальном газе:

,

в рассматриваемом случае:

.

Уравнение Майера показывает, что различие теплоёмкостей газа равно работе, совершаемой одним молем идеального газа при изменении его температуры на 1 K, и разъясняет смысл универсальной газовой постоянной — механический эквивалент теплоты.

23)

Изохорный процесс:

При изохорном процессе объём не меняется и поэтому работа газа равна нулю. Изменение энергии согласно уравнению (Q=ΔU+A′) равно количеству переданной теплоты: ΔU=Q

Если газ нагревается, то Q>0 и ΔU>0, его внутренняя энергия увеличивается. При охлаждении газа Q 0), то он расширяется и совершает положительную работу (A′>0). Одновременно увеличивается его внутренняя энергия (ΔU>0).

При охлаждении (Q 0), его внутренняя энергия уменьшается (ΔU 0), то он совершает положительную работу (A′>0).

Если газ отдаёт теплоту окружающей среде (термостату), то Q [ . Поэтому, первое начало термодинамики в этом случае приобретает вид

где — изменение внутренней энергии тела, — работа, совершаемая системой.

Изменения энтропии S системы в обратимом адиабатическом процессе вследствие передачи тепла через границы системы не происходит:

Здесь — температура системы, — теплота, полученная системой. Благодаря этому адиабатический процесс может быть составной частью обратимого цикла

Уравнение Пуассона

Адиабата Пуассона

Для идеальных газов, чью теплоёмкость можно считать постоянной, в случае квазистатического процесса адиабата имеет простейший вид и определяется уравнением:

где — его объём, — показатель адиабаты, и — теплоёмкости газа соответственно при постоянном давлении и постоянном объёме.

С учётом уравнения состояния идеального газа уравнение адиабаты может быть преобразовано к виду

где — абсолютная температура газа. Или к виду

Поскольку всегда больше 1, из последнего уравнения следует, что при адиабатическом сжатии (то есть при уменьшении ) газ нагревается ( возрастает), а при расширении — охлаждается, что всегда верно и для реальных газов. Нагревание при сжатии больше для того газа, у которого больше коэффициент .

Вывод уравнения

Согласно закону Менделеева — Клапейрона для идеального газа справедливо соотношение

где R — универсальная газовая постоянная. Вычисляя полные дифференциалы от обеих частей уравнения, полагая независимыми термодинамическими переменными , получаем

Если в (3) подставить из (2), а затем из (1), получим

Читать еще:  Как снять обшивку водительской двери Форд фокус 2

или, введя коэффициент :

.

Это уравнение можно переписать в виде

что после интегрирования даёт:

.

Потенцируя, получаем окончательно:

что и является уравнением адиабатического процесса для идеального газа.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Теплоемкость при постоянном давлении

3.10. Теплоёмкость идеального газа

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q , необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c .

Во многих случаях удобно использовать молярную теплоемкость C :

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: C V – молярная теплоемкость в изохорном процессе ( V = const ) и C p – молярная теплоемкость в изобарном процессе ( p = const ).

В процессе при постоянном объеме газ работы не совершает: A = 0 . Из первого закона термодинамики для 1 моля газа следует

Изменение Δ U внутренней энергии газа прямо пропорционально изменению Δ T его температуры.

Для процесса при постоянном давлении первый закон термодинамики дает:

Отношение Δ V / Δ T может быть найдено из уравнения состояния идеального газа, записанного для 1 моля:

или

Таким образом, соотношение, выражающее связь между молярными теплоемкостями C p и C V , имеет вид ( формула Майера ):

Молярная теплоемкость C p газа в процессе с постоянным давлением всегда больше молярной теплоемкости C V в процессе с постоянным объемом (рис. 3.10.1).

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой γ .

В частности, это отношение входит в формулу для адиабатического процесса (см. §3.9).

Между двумя изотермами с температурами T 1 и T 2 на диаграмме ( p , V ) возможны различные пути перехода. Поскольку для всех таких переходов изменение температуры Δ T = T 2 – T 1 одинаково, следовательно, одинаково изменение Δ U внутренней энергии. Однако, совершенные при этом работы A и полученные в результате теплообмена количества теплоты Q окажутся различными для разных путей перехода. Отсюда следует, что у газа имеется бесчисленное количество теплоемкостей. C p и C V – это лишь частные (и очень важные для теории газов) значения теплоемкостей.

Термодинамические процессы, в которых теплоемкость газа остается неизменной, называются политропическими . Все изопроцессы являются политропическими. В случае изотермического процесса Δ T = 0 , поэтому C T = ∞ . В адиабатическом процессе Δ Q = 0 , следовательно, C ад = 0 .

Следует отметить, что «теплоемкость», как и «количество теплоты» – крайне неудачные термины. Они достались современной науке в наследство от теории теплорода , господствовавшей в XVIII веке. Эта теория рассматривала теплоту как особое невесомое вещество, содержащееся в телах. Считалось, что оно не может быть ни создано, ни уничтожено. Нагревание тел объяснялось увеличением, а охлаждение – уменьшением содержащегося внутри них теплорода. Теория теплорода несостоятельна. Она не может объяснить, почему одно и то же изменение внутренней энергии тела можно получить, передавая ему разное количество теплоты в зависимости от работы, которую совершает тело. Поэтому лишено физического смысла утверждение, что «в данном теле содержится такой-то запас теплоты».

В молекулярно-кинетической теории устанавливается следующее соотношение между средней кинетической энергией поступательного движения молекул и абсолютной температурой T :

Внутренняя энергия 1 моля идеального газа равна произведению на число Авогадро N А :

При изменении температуры на Δ T внутренняя энергия изменяется на величину

Коэффициент пропорциональности между Δ U и Δ T равен теплоемкости C V при постоянном давлении:

Это соотношение хорошо подтверждается в экспериментах с газами, состоящими из одноатомных молекул (гелий, неон, аргон). Однако, для двухатомных (водород, азот) и многоатомных (углекислый газ) газов это соотношение не согласуется с экспериментальными данными. Причина такого расхождения состоит в том, что для двух- и многоатомных молекул средняя кинетическая энергия должна включать энергию не только поступательного, но и вращательного движения молекул.

На рис. 3.10.2 изображена модель двухатомной молекулы. Молекула может совершать пять независимых движений: три поступательных движения вдоль осей X , Y , Z и два вращения относительно осей X и Y . Опыт показывает, что вращение относительно оси Z , на которой лежат центры обоих атомов, может быть возбуждено только при очень высоких температурах. При обычных температурах вращение около оси Z не происходит, так же как не вращается одноатомная молекула. Каждое независимое движение называется степенью свободы . Таким образом, одноатомная молекула имеет 3 поступательные степени свободы, «жесткая» двухатомная молекула имеет 5 степеней (3 поступательные и 2 вращательные), а многоатомная молекула – 6 степеней свободы (3 поступательные и 3 вращательные).

В классической статистической физике доказывается так называемая теорема о равномерном распределении энергии по степеням свободы :

Если система молекул находится в тепловом равновесии при температуре T , то средняя кинетическая энергия равномерно распределена между всеми степенями свободы и для каждой степени свободы молекулы она равна

Из этой теоремы следует, что молярные теплоемкости газа C p и C V и их отношение γ могут быть записаны в виде

Источники:

http://www.physbook.ru/index.php/%D0%A2._%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D0%B5%D0%BC%D0%BA%D0%BE%D1%81%D1%82%D1%8C_%D0%B3%D0%B0%D0%B7%D0%BE%D0%B2
http://ens.tpu.ru/POSOBIE_FIS_KUSN/%D0%9C%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D1%8F%D1%80%D0%BD%D0%B0%D1%8F%20%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0.%20%D0%A2%D0%B5%D1%80%D0%BC%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%BA%D0%B0/04-2.htm
http://zaochnik.com/spravochnik/fizika/termodinamika/teploemkost-idealnogo-gaza/
http://studopedia.ru/5_72503_teploemkost-pri-postoyannom-ob-eme-i-teploemkost-pri-postoyannom-davlenii.html
http://cyberpedia.su/4x60c5.html
http://physics.ru/courses/op25part1/content/chapter3/section/paragraph10/theory.html

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector