7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Идеальные циклы поршневых ДВС

Идеальные циклы поршневых ДВС

Главное меню

Судовые двигатели

Идеальным циклом двигателя называется круговой замкнутый обратимый цикл, представляющий собой совокупность последова­тельных процессов, совершаемых идеальным газом в цилиндре идеальной машины. При идеальном цикле допускаются следую­щие отступления: 1) с идеальным газом, находящимся в цилиндре, совершаются только физические, по не химические изменения, т. е. состав и масса газа остаются постоянными; 2) тепло подво­дится к газу извне, а не в процессе сгорания топлива в цилиндре; 3) процессы сжатия и расширения совершаются по адиабатам, т. е. без теплообмена с внешней средой (стенки цилиндра теплоне­проницаемые и трение между поршнем и стенками цилиндра отсутствует); 4) теплоемкость газа не зависит от температуры; 5) выпуск отработавших газов заменяется передачей некоторого количества тепла холодному источнику при постоянном объеме. Идеальные циклы применяют для исследования действительных циклов, происходящих в реальных двигателях, и сравнения по сте­пени использования тепла различных типов двигателей, незави­симо от их конструктивных особенностей.

Различают идеальные циклы: с подводом тепла при постоян­ных объеме и давлении и смешанным подводом тепла. Лучшим для современных судовых двигателей внутреннего сгорания явля­ется цикл со смешанным подводом тепла. На рис. 198 показаны диаграммы этого цикла в координатах р, V и Т, s . Основными процессами цикла являются: ас — адиабатное сжатие: сz’ — изохорный подвод тепла Q ?1 ; z’z — изобарный подвод тепла Q p 1 ; zе — адиабатное расширение и еа — отвод тепла Q 2 к холодному источ­нику по изохоре.

Основные характеристики цикла следующие: Степень сжатия ? — отношение полного объема цилиндра V a к объему в конце сжатия V с

Степень повышения давления ?— отношение давления р z в конце подвода тепла к давлению р с в конце сжатия

Степень предварительного расширения ? — отношение объема V z в конце подвода тепла к объему V с в конце сжатия

Степень последующего расширения ?— отношение объема V е в конце расширения к объему V z в конце подвода тепла

Так как V е =V а , то из произведения

Термический к. п. д. ? t — отношение количества тепла, превра­щенного в работу в цилиндре идеальной машины, к количеству тепла, затраченному на совершение работы:

Подставив значение для количества подведенного и отведен­ного тепла и произведя некоторые преобразования (из курса тех­нической термодинамики), получим окончательное выражение для термического к. п. д. смешанного цикла:

Из этого выражения следует, что термический к. п. д. возрас­тает с повышением степени сжатия ?, показателя адиабаты k и степени повышения давления ? и уменьшается при увеличении степени предварительного расширения ?. При перегрузках вслед­ствие повышенной подачи топлива величина ? возрастает, что приводит к уменьшению экономичности двигателя.

Расчетный или теоретический цикл отличается от идеального и действительного, занимая между ними промежуточное положение. В расчетном цикле учитывают все явления, имеющие место в действительном цикле, но полагают, что сжатие и расширение протекают с постоянными показателями политроп. Процессы на­полнения и выпуска полагают протекающими при неизменных давлениях, причем начало и конец каждого процесса совпадают с моментом прихода поршня в крайние положения. Процессы сго­рания топлива считают происходящими сперва при V = const, за­тем при р = const.

На рис. 199 приведены схемы действительного и расчетного циклов дизеля со смешанным подводом тепла.

Циклы двухтактных ДВС отличаются от циклов четырехтакт­ных только процессами наполнения цилиндров и выпуска отрабо­тавших газов: у двухтактных ДВС они совмещены.

Действительный цикл ДВС, под которым понимают ряд после­довательно повторяющихся в цилиндре процессов, обусловливаю­щих работу двигателя, значительно отличается от идеального. Количество газа в действительном цикле меняется: с ним проис­ходят не только физические, но и химические изменения. Подвод тепла осуществляется не извне, а за счет сжигания топлива внутри цилиндра. Вследствие теплообмена с окружающей- средой про­цессы расширения и сжатия происходят не адиабатно, а политропно, причем показатели политроп непрерывно изменяются. После окончания каждого действительного цикла отработавший газ не возвращается в первоначальное состояние, а удаляется из цилиндра. Вместо него цилиндр заполняется свежим зарядом. Про­цессы наполнения цилиндра и выпуска газов происходит при пе­ременном давлении. Начало и конец процессов выпуска и напол­нения не совпадают с моментами прихода поршня в крайние по­ложения. Процесс сгорания происходит не при V = const и р = const как в идеальном цикле, а представляет более сложный процесс.

Электронная библиотека

В двигателях внутреннего сгорания могут быть использованы следующие циклы:

· со смешанным подводом теплоты как при постоянном объеме, так и при постоянном давлении;

· с подводом теплоты при постоянном объеме (v = const);

· с подводом теплоты при постоянном давлении (р = const).

Во всех перечисленных циклах отвод теплоты в цикле производится при постоянном объеме в силу того, что расширение газа происходит не полностью, и степень возможного расширения в двигателе определяется положением поршня в нижней мертвой точке.

Цикл со смешанным подводом теплоты (цикл Тринклера)

Цикл со смешанным подводом теплоты (цикл Тринклера) осуществляется в бескомпрессорных дизелях. В цилиндрах дизеля сжимается чистый воздух, и происходит самовоспламенение топлива, распыление которого осуществляется механическим путем с помощью насоса или насос-форсунки под давлением 100…150 МПа.

Топливо впрыскивается в камеру сгорания или специальные предкамеры. Процесс сгорания идет вначале с повышением давления, а затем при постоянном давлении. Осуществление такого подвода теплоты характерно для двигателей, работающих по смешанному циклу. При термодинамическом исследовании рассматривают цикл, состоящий из следующих процессов (рис. 9.14): aс – адиабатное сжатие; cz’ – изохорный подвод теплоты; z’z – изобарный подвод теплоты; ze – адиабатное расширение; еа – изохорный отвод теплоты.

Рис. 9.14. Диаграммы работы цикла со смешанным подводом теплоты

Цикл является как бы обобщающим для всех циклов поршневых ДВС. Цикл со смешанным подводом зависит от заданного начального состояния в точке с и от параметров цикла:

· степени сжатия (степень сжатия представляет собой отношение полного объема цилиндра Va к объему камеры сгорания Vc; разность между полным объемом и объемом камеры сгорания дает так называемый рабочий объем цилиндра Vh);

· степени изохорного повышения давления ;

· степени предварительного (изобарного) расширения .

Параметры рабочего тела в узловых точках цикла при рассмотрении отдельных процессов, находят по формулам:

Термический КПД смешанного цикла равен:

Подставляя выражения для соответствующих температур и полагая, что теплоемкости идеального газа величины постоянные, получим:

Как видно из формулы (9.9), термический КПД цикла растет с увеличением и k и уменьшается с увеличением . Степень изохорного повышения давления связана с величиной . Чем больше , тем меньше (при тех же значениях и q2). Тогда с ростом термический КПД смешанного цикла увеличивается.

Работа теоретического цикла определяется по формуле:

Отношение работы цикла к рабочему объему vh характеризует среднее давление цикла:

Среднее давление смешанного цикла равно:

Наиболее эффективным способом увеличения среднего давления цикла является повышение начального давления – наддув двигателя.

Рассмотренный идеальный цикл лежит в основе работы всех современных дизелей.

Цикл с подводом теплоты при постоянном объеме (цикл Отто)

Цикл с подводом теплоты при постоянном объеме (цикл Отто) является частным случаем рассмотренного цикла со смешанным подводом теплоты, когда степень изобарного расширения = 1.

По этому циклу работают двигатели, в цилиндрах которых сжимается топливно-воздушная смесь до давления 1,0… 1,5 МПа и поджигается в конце сжатия от электрической искры. Идеальный цикл Отто (рис. 9.15) состоит из процессов адиабатного сжатия (ас), подвода к рабочему телу теплоты при v = const (cz), адиабатного расширения (ze) и отдачи рабочим телом теплоты при v =const (еа).

Параметры в узловых точках цикла определяются так же, как и для цикла со смешанным подводом теплоты.

Рис. 9.15. Диаграммы работы цикла с подводом теплоты при постоянном объеме

Из выражения (9.11) видно, что термический КПД цикла с подводом теплоты при v = const зависит от степени сжатия и показателя адиабаты k рабочего тела, совершающего цикл. Несмотря на то, что с увеличением степени сжатия растут термический КПД и полезная работа цикла, при больших степенях сжатия ( > 10) в результате значительного повышения температуры в конце процесса сжатия может наступить самовоспламенение смеси.

Читать еще:  Двигатель Subaru EJ20 20 л

Еще более существенным является то обстоятельство, что с увеличением степени сжатия, а следовательно, и с увеличением температуры в конце сжатия появляется детонация свежей рабочей смеси, которая приводит к взрывному характеру сгорания. В результате детонации процесс сгорания нарушается, мощность двигателя падает, расход топлива растет. По этой причине двигатели, работающие по циклу v = const, имеют вполне определенные предельные значения степени сжатия ( = 5,5…9,0).

Явление детонации в значительной степени зависит от сорта применяемого топлива, от его антидетонационных качеств. Поэтому сорт применяемого топлива определяет выбор предельного значения степени сжатия для двигателей легкого топлива.

Цикл с подводом теплоты при постоянном давлении (цикл Дизеля)

Цикл с подводом теплоты при постоянном давлении (цикл Дизеля) является также частным случаем обобщающего цикла при = 1. В двигателях дизеля раздельно сжимается воздух до давления 4,0…5,0 МПа, и смесь топлива с воздухом, сжатым во вспомогательном компрессоре. Подача топлива осуществляется так, чтобы давление в процессе сгорания оставалось постоянным.

Идеальный цикл дизеля (рис. 9.16) состоит из двух адиабат сжатия и расширения, изобары подвода теплоты и изохоры отвода теплоты Термический КПД и среднее давление цикла из формул (9.9) и (9.10) при = 1 соответственно равны:

Влияние на такое же, как и в циклах Тринклера и Отто, т.е. с увеличением степени сжатия увеличивается и термический КПД цикла. При увеличении степени предварительного расширения ( ), как видно из формулы (9.12), термический КПД цикла должен падать.

Рис. 9.16. Диаграммы работы цикла с подводом теплоты при постоянном давлении

При постоянной степени сжатия увеличение вызовет увеличение объема vz , который зависит от подводимого количества теплоты q1. При увеличении q1 увеличивается объем vz, а вместе с ним увеличивается и работа цикла. Таким образом, возрастание приводит к увеличению работы и уменьшению термического КПД.

Сопоставляя значения термических КПД циклов с подводом теплоты при v = const и p = const, видим, что они различаются множителем:

Отсюда следует, что при одинаковых степенях сжатия > .

Термодинамическая эффективность каждого из рассмотренных циклов зависит от конкретных условий его осуществления. Целесообразнее сравнивать циклы при различных степенях сжатия , но при одинаковых максимальных давлениях и температурах и одинаковом отведенном количестве теплоты q2.

Из TS-диаграммы (рис. 9.17) следует, что наибольший термический КПД будет у цикла с подводом теплоты при р = const:

КПД смешанного цикла имеет промежуточное значение по сравнению с циклами с подводом теплоты при p = const и v = const.

Рис. 9.17. Сравнение циклов при различных степенях сжатия

При оптимальных степенях сжатия (для цикла Отто

Реальные и идеальные циклы. Виды поршневых ДВС

Рабочим телом в ДВС являются в начале воздух или смесь воздуха с топливом, а в конце – смесь газов, образовавшаяся при сгорании топлива. Теплота к рабочему телу подводится от сжигаемого топлива внутри цилиндров двигателя, в которых расширяющийся от нагревания газ перемещает поршень. Полученная газом энергия частично расходуется на совершение механической работы, остальная часть отдается окружающей среде.

Основными элементами любого поршневого ДВС являются цилиндр 1 с поршнем 2, возвратно-поступательное движение которого преобразуется во вращательное движение коленчатого вала 8 с помощью кривошипно-шатунного механизма 6, 7 (рис. 1). В верхней части цилиндра размещены впускной 4 и выпускной 5 клапаны, приводимые в движение от главного вала двигателя, а также свеча зажигания 3 топливной смеси (или форсунка для распыления топлива). Помимо этого у ДВС имеются механизм газораспределения, системы питания топливом, зажигания, смазки, охлаждения и регулирования (на рисунке не показаны).

Рис. 1. Схема поршневого ДВС

В возвратно-поступательном движении поршня различают два крайних положения: верхнее и нижнее, в которых поршень меняет направление движения на обратное. Эти положения называются мертвыми точками. Расстояние между мертвыми точками называют ходом поршня S, а перемещение поршня из ВМТ в НМТ или наоборот – тактом. Внутренний объем цилиндра в пределах хода поршня называют рабочим объемом цилиндра.

Часть объема цилиндра, заключенную между крышкой и торцом поршня, находящегося в ВМТ, называют камерой сгорания.

Для обеспечения наиболее полного сгорания топлива оно должно быть хорошо перемешано с воздухом. Смесь распыленного в воздухе топлива, предназначенного для сжигания, называют рабочей смесью, а процесс приготовления рабочей смеси – смесеобразованием.

По способу приготовления горючей смеси ДВС подразделяются на две группы: с внешним и внутренним смесеобразованием.

К двигателям с внешним смесеобразованием относятся карбюраторные и газовые двигатели. Рабочая смесь в них приготавливается в специальном устройстве – карбюраторе (при работе на бензине или керосине) или смесителе (при работе на газовом топливе). В этом случае в камеру сгорания подается уже готовая рабочая смесь, которая воспламеняется принудительно от электрической искры (свечи зажигания).

В двигателях с внутренним смесеобразованием приготовление рабочей смеси происходит внутри рабочего цилиндра, куда воздух и топливо подаются раздельно. Сначала поршень сжимает чистый воздух до давления 3-4 МПа, вследствие чего его температура в конце сжатия достигает 600-650 °С, затем в камеру сгорания через форсунку впрыскивается жидкое топливо (дизельное или моторное), которое воспламеняется при смешении с раскаленным воздухом.

По способу осуществления цикла ДВС могут быть двух- и четырехтактными. В четырехтактном двигателе рабочий цикл осуществляется за четыре хода поршня (такта), т.е. за два оборота вала, а в двухтактном двигателе – за два хода (такта) поршня, т.е. один оборот коленчатого вала.

Исследование работы реального поршневого двигателя проводят по диаграмме, в которой дается изменение давления в цилиндре в зависимости от положения поршня (объема) за весь цикл. Такую диаграмму, снятую с помощью прибора – индикатора, называют индикаторной диаграммой (рис.2).

Рис. 2. Действительная индикаторная диаграмма четырехтактного двигателя

0-1 – заполнение цилиндра воздухом (при внутреннем смесеобразова-нии) или рабочей смесью (при внешнем смесеобразовании) при давлении несколько ниже атмосферного из-за гидродинамического сопротивления впускных клапанов и всасывающего трубопровода,

1-2 – сжатие воздуха или рабочей смеси,

2-3′-3 – период горения рабочей смеси,

3-4 – рабочий ход поршня (расширение продуктов сгорания), совершается механическая работа,

4-5 – выхлоп отработавших газов, падение давления до атмосферного происходит практически при постоянном объеме,

5-0 – освобождение цилиндра от продуктов сгорания.

В реальных тепловых двигателях преобразование теплоты в работу связано с протеканием сложных необратимых процессов (имеются трение, химические реакции в рабочем теле, конечные скорости поршня, теплообмен и др.) Термодинамический анализ такого цикла невозможен.

В связи с этим для выявления основных факторов, влияющих на эффективность работы установок, действительные процессы заменяют обратимыми термодинамическими процессами, допускающими применение для их анализа термодинамических методов. Такие циклы называют теоретическими.

Допущения, используемые для теоретических циклов:

1) циклы замкнуты (в действительности продукты сгорания удаляются в атмосферу, а на их место поступает новое рабочее тело).

2) Рабочее тело – идеальный газ с постоянной теплоемкостью

3) Подвод теплоты осуществляется от внешних источников теплоты, а не за счет сжигания топлива (аналогично отвод теплоты)

4) Механические потери (трение, потери теплоты) отсутствуют.

5) Процессы 0-1 и 5-0 исключают из рассмотрения, т.к. работа в них практически одинаковая, только имеет разный знак.

Анализ циклов тепловых двигателей проводится в два этапа: сначала анализируется эффективность теоретического (обратимого) цикла, а затем — реальный (необратимый) цикл с учетом основных источников необратимости.

Для ДВС рассматривают следующие основные циклы:

а) цикл с подводом теплоты при постоянном объеме (v = const) — цикл Отто;

б) цикл с подводом теплоты при постоянном давлении (р = const) — цикл Дизеля;

Читать еще:  Такси Убер Uber

в) цикл со смешанным подводом теплоты, как при v =const и р=const — цикл Тринклера.

Реальные и идеальные циклы. Виды поршневых ДВС

Рабочим телом в ДВС являются в начале воздух или смесь воздуха с топливом, а в конце – смесь газов, образовавшаяся при сгорании топлива. Теплота к рабочему телу подводится от сжигаемого топлива внутри цилиндров двигателя, в которых расширяющийся от нагревания газ перемещает поршень. Полученная газом энергия частично расходуется на совершение механической работы, остальная часть отдается окружающей среде.

Основными элементами любого поршневого ДВС являются цилиндр 1 с поршнем 2, возвратно-поступательное движение которого преобразуется во вращательное движение коленчатого вала 8 с помощью кривошипно-шатунного механизма 6, 7 (рис. 1). В верхней части цилиндра размещены впускной 4 и выпускной 5 клапаны, приводимые в движение от главного вала двигателя, а также свеча зажигания 3 топливной смеси (или форсунка для распыления топлива). Помимо этого у ДВС имеются механизм газораспределения, системы питания топливом, зажигания, смазки, охлаждения и регулирования (на рисунке не показаны).

Рис. 1. Схема поршневого ДВС

В возвратно-поступательном движении поршня различают два крайних положения: верхнее и нижнее, в которых поршень меняет направление движения на обратное. Эти положения называются мертвыми точками. Расстояние между мертвыми точками называют ходом поршня S, а перемещение поршня из ВМТ в НМТ или наоборот – тактом. Внутренний объем цилиндра в пределах хода поршня называют рабочим объемом цилиндра.

Часть объема цилиндра, заключенную между крышкой и торцом поршня, находящегося в ВМТ, называют камерой сгорания.

Для обеспечения наиболее полного сгорания топлива оно должно быть хорошо перемешано с воздухом. Смесь распыленного в воздухе топлива, предназначенного для сжигания, называют рабочей смесью, а процесс приготовления рабочей смеси – смесеобразованием.

По способу приготовления горючей смеси ДВС подразделяются на две группы: с внешним и внутренним смесеобразованием.

К двигателям с внешним смесеобразованием относятся карбюраторные и газовые двигатели. Рабочая смесь в них приготавливается в специальном устройстве – карбюраторе (при работе на бензине или керосине) или смесителе (при работе на газовом топливе). В этом случае в камеру сгорания подается уже готовая рабочая смесь, которая воспламеняется принудительно от электрической искры (свечи зажигания).

В двигателях с внутренним смесеобразованием приготовление рабочей смеси происходит внутри рабочего цилиндра, куда воздух и топливо подаются раздельно. Сначала поршень сжимает чистый воздух до давления 3-4 МПа, вследствие чего его температура в конце сжатия достигает 600-650 °С, затем в камеру сгорания через форсунку впрыскивается жидкое топливо (дизельное или моторное), которое воспламеняется при смешении с раскаленным воздухом.

По способу осуществления цикла ДВС могут быть двух- и четырехтактными. В четырехтактном двигателе рабочий цикл осуществляется за четыре хода поршня (такта), т.е. за два оборота вала, а в двухтактном двигателе – за два хода (такта) поршня, т.е. один оборот коленчатого вала.

Исследование работы реального поршневого двигателя проводят по диаграмме, в которой дается изменение давления в цилиндре в зависимости от положения поршня (объема) за весь цикл. Такую диаграмму, снятую с помощью прибора – индикатора, называют индикаторной диаграммой (рис.2).

Рис. 2. Действительная индикаторная диаграмма четырехтактного двигателя

0-1 – заполнение цилиндра воздухом (при внутреннем смесеобразова-нии) или рабочей смесью (при внешнем смесеобразовании) при давлении несколько ниже атмосферного из-за гидродинамического сопротивления впускных клапанов и всасывающего трубопровода,

1-2 – сжатие воздуха или рабочей смеси,

2-3′-3 – период горения рабочей смеси,

3-4 – рабочий ход поршня (расширение продуктов сгорания), совершается механическая работа,

4-5 – выхлоп отработавших газов, падение давления до атмосферного происходит практически при постоянном объеме,

5-0 – освобождение цилиндра от продуктов сгорания.

В реальных тепловых двигателях преобразование теплоты в работу связано с протеканием сложных необратимых процессов (имеются трение, химические реакции в рабочем теле, конечные скорости поршня, теплообмен и др.) Термодинамический анализ такого цикла невозможен.

В связи с этим для выявления основных факторов, влияющих на эффективность работы установок, действительные процессы заменяют обратимыми термодинамическими процессами, допускающими применение для их анализа термодинамических методов. Такие циклы называют теоретическими.

Допущения, используемые для теоретических циклов:

1) циклы замкнуты (в действительности продукты сгорания удаляются в атмосферу, а на их место поступает новое рабочее тело).

2) Рабочее тело – идеальный газ с постоянной теплоемкостью

3) Подвод теплоты осуществляется от внешних источников теплоты, а не за счет сжигания топлива (аналогично отвод теплоты)

4) Механические потери (трение, потери теплоты) отсутствуют.

5) Процессы 0-1 и 5-0 исключают из рассмотрения, т.к. работа в них практически одинаковая, только имеет разный знак.

Анализ циклов тепловых двигателей проводится в два этапа: сначала анализируется эффективность теоретического (обратимого) цикла, а затем — реальный (необратимый) цикл с учетом основных источников необратимости.

Для ДВС рассматривают следующие основные циклы:

а) цикл с подводом теплоты при постоянном объеме (v = const) — цикл Отто;

б) цикл с подводом теплоты при постоянном давлении (р = const) — цикл Дизеля;

в) цикл со смешанным подводом теплоты, как при v =const и р=const — цикл Тринклера.

7.2. Циклы двигателей внутреннего сгорания (ДВС)

Циклы поршневых двигателей внутреннего сгорания подразделяют на три группы:

  • с подводом теплоты при постоянном объеме (карбюраторные ДВС);
  • с подводом теплоты при постоянном давлении (компрессорные дизели);
  • со смешанным подводом теплоты при постоянном объеме (безкомпрессорные дизели);

Основными характеристиками или параметрами любого цикла теплового двигателя являются следующие безрамерные величины:

степень сжатия (отношение удельных объемов рабочего тела в начале и конце сжатия)

степень повышения давления (отношение давлений в конце и в начале изохорного процесса подвода теплоты)

степень предварительного расширения или степень изобарного расширения (отношение удельных объемов в конце и в начале изохорного процесса подвода теплоты)

1). Рассмотрим цикл ДВС с подводом теплоты при постоянном объеме на примере четырехтактного двигателя.

Диаграмма реального двигателя представлена на рис.7.3.

а-1 (1 такт) – в цилиндр через всасывающий клапан поступает смесь воздуха и паров горючего (нетермодинамичемкий процесс);

1-2 (2 такт) – адиабатное сжатие (повышается температура);

2-3 – сгорание горючей смеси, давление быстро возрастает при постоянном объеме (подвод теплоты q1);

3-4 (3 такт) – адиабатное расширение (рабочий процесс, совершается полезная работа);

4-а – открывается выхлопной клапан и отработанные газы покидают цилиндр давление цилиндра падает (отводится тепло q2).

1-а (4 такт) – выталкивание оставшихся в цилиндре газов.

Затем процесс повторяется.

Описанный процесс является необратимым (наличие трения, химической реакции в рабочем теле, конечные скорости поршня, теплообмен при конечной разности температур и т.п.).

Для анализа теории тепловых машин термодинамика рассматривает идеальные циклы обратимые циклы. Диаграмма идеального процесса двигателя внутреннего сгорания показана на рис.7.4.

Из этой диаграммы выводится формула для термического к.п.д. цикла с подводом теплоты при постоянном объеме, который имеет следующий вид:

h t = 1 – 1/ e g , (7.8)

где: e –степень сжатия (основной показатель работы двигателя, чем выше е, тем выше экономичность ДВС);

g – показатель адиабаты.

2). Идеальный цикл ДВС со смещанным подводом теплоты при постоянном объеме (безкомпрессорные дизели). Диаграмма цикла показана на рис.7.5.

1-2 — чистый воздух с температурой Т1 сжимается до температуры Т2, которая больше температуры воспламенения топлива. В этот момент в цилиндр через форсунки под давлением впрыскивается топливо.

2-3 – горючая смесь самовоспламеняется и к рабочему телу подводится тепло q1 / , давление повышается до Р3.

3-4 – поршень перемешается обратно, поступление и сгорание топлива продолжается при постоянном давлении и подводится тепло q1 // .

4-5 – поршень продолжает перемещаться в нижнюю мертвую точку, давление падает (адиабатное расширение);

5-1 – процесс отвода теплоты q2 при постоянном объеме (через выпускной клапан покидают отработанные газы).

Читать еще:  Новинки зимних шин 20202020

Термический к.п.д. цикла определяется по формуле:

h t = l – ( l · r g – 1) / e g -1 ·[( l — 1) + g · l ·( r – 1)] . (7.9)

Цикл двигателей с подводом теплоты при постоянном давлении широкое применение не нашли, так как у этих циклов очень большой коэффициент сжатия.

Идеальные циклы поршневых ДВС

и многое другое

Вы сможете найти

ЦИКЛЫ ПОРШНЕВЫХ ДВИГАТЕЛЕЙ

ВНУТРЕННЕГО СГОРАНИЯ

1. Краткие исторические сведения

Вся история развития двигателей внутреннего сгорания подвержена основной движущей силе — увеличение КПД ДВС.

Первым, кто указал на возможность создания двигателей внутреннего сгорания, является Сади Карно. Идеи, высказанные им в работе «Размышления о движущей силе огня», в дальнейшем были полностью реализованы.

В 1860 г. Француз Ленуар построил двигатель внутреннего сгорания (ДВС), работавший на газе. Однако он не получил широкого распространения ввиду того, что имел низкий кпд (не выше, чем кпд паровых машин).

В 1862 г. французский инженер Бо-де-Роша предложил (запатентовал) двигатель, принципы создания которого совпадали с идеями Карно. Эти принципы были осуществлены немецким инженером Отто в созданном им в 1877 г. бензиновом двигателе.

В 1897 г. немецким инженером Дизелем был разработан двигатель высокого сжатия, который работал на керосине. Распыление керосина осуществлялось воздухом высокого давления, полученного от компрессора.

В 1904 г. русский инженер Г.В.Тринклер построил бескомпрессорный двигатель со смешанным сгоранием топлива — сначала при постоянном объеме, а затем при постоянном давлении. Такой двигатель получил в настоящее время широкое распространение.

2. Классификация ДВС

Все современные двигатели внутреннего сгорания подразделяются на три основные группы:

1. Двигатели, в которых используется цикл с подводом тепла при постоянном объеме v=const (цикл Отто).

2. Двигатели, в которых используется цикл с подводом тепла при постоянном давлении p=const (цикл Дизеля).

3. Двигатели, в которых используется смешанный цикл с подводом тепла как при v=const , так и при p=const (цикл Тринклера).

При исследовании идеальных термодинамических циклов поршневых двигателей внутреннего сгорания к числу определяемых величин относятся: количество подведенной и отведенной теплоты, основные параметры состояния в характерных точках цикла, термический кпд цикла.

3. Циклы ДВС с подводом теплоты при постоянном объеме

Исследование работы реального поршневого двигателя целесообразно производить по так называемой индикаторной диаграмме (снятой с помощью специального прибора — индикатора). Индикаторная диаграмма двигателя, работающего со сгоранием топлива при постоянном объеме, представлена на рис.1.



При движении поршня от верхней мертвой точки к нижней происходит всасывание горючей смеси (линия 0-1). Эта линия не является термодинамическим процессом, так как основные параметры при всасывании не изменяются, а изменяются только масса и объем смеси в цилиндре. Кривой 1-2 (линия сжатия) изображается процесс сжатия (поршень движется от нижней мертвой точки к верхней). В точке 2 от электрической искры происходит мгновенное воспламенение горючей смеси (при постоянном объеме). Этот процесс изображается кривой 2-3. В ходе этого процесса температура и давление резко возрастают. Процесс расширения продуктов сгорания на индикаторной диаграмме изображается кривой 3-4, называемой линией расширения. В точке 4 происходит открытие выхлопного клапана, и давление в цилиндре уменьшается до наружного давления. При дальнейшем движении поршня (от нижней мертвой точки к верхней) через выхлопной клапан происходит удаление продуктов сгорания из цилиндра при давлении несколько большем давления окружающей среды. Этот процесс на диаграмме изображается кривой 4-0 и называется линией выхлопа.

В данном случае рабочий процесс совершается за четыре хода поршня (такта). Коленчатый вал делает за это время два оборота. В связи с чем, рассмотренные двигатели называются четырехтактными.

Из анализа работы реального двигателя видно, что рабочий процесс не является замкнутым и в нем присутствуют все признаки необратимых процессов: трение, теплообмен при конечной разности температур, конечные скорости поршня и проч.

Так как в термодинамике исследуются лишь идеальные обратимые циклы, то для исследования цикла ДВС примем следующие допущения: рабочее тело -идеальный газ с постоянной теплоемкостью; количество рабочего тела постоянно; между рабочим телом и источниками теплоты имеет место бесконечно малая разность температур; подвод теплоты к рабочему телу производится не за счет сжигания топлива, а от внешних источников теплоты. То же самое справедливо и для отвода теплоты.

Принятые допущения приводят к изучению идеальных термодинамических циклов ДВС, что позволяет производить сравнение различных двигателей и определять факторы, влияющие на их кпд. Диаграмма, построенная с учетом указанных выше допущений, будет уже не индикаторной диаграммой двигателя, а pv — диаграммой его цикла.

Рассмотрим идеальный термодинамический цикл ДВС с изохорным подводом теплоты. Цикл в pv координатах представлен на рис. 2.

Идеальный газ с начальными параметрами p1, v1,T1 сжимается по адиабате 1-2. В изохорном процессе 2-3 рабочему телу от внешнего источника теплоты передается количество теплоты q1. В адиабатном процессе 3-4 рабочее тело расширяется до первоначального объема v4=v1. В изохорном процессе 4-1 рабочее тело возвращается в исходное состояние с отводом от него теплоты q2 в теплоприемник.

Характеристиками цикла являются:

— Степень сжатия;

-Степень повышения давления;

Рис. 2

Количество подведенной и отведенной теплоты определяются по формулам:

Подставляя эти значения теплот в формулу для термического кпд, получим:

Найдем параметры рабочего тела во всех характерных точках цикла.

С учетом найденных значений температур формула для кпд примет вид

И з последнего соотношения следует, что термический кпд увеличивается с возрастанием степени сжатия e и показателя адиабаты k.

Однако повышение степени сжатия в двигателях данного типа ограничивается возможностью преждевременного самовоспламенения горючей смеси. В связи с чем, рассматриваемые типы двигателей имеют относительно низкие кпд. В зависимости от рода топлива степень сжатия в таких двигателях изменяется от 4 до 9.

Работа цикла определяется по формуле:

Циклы с подводом теплоты при постоянном объеме применяются в карбюраторных типах двигателей с использованием принудительного воспламенения от электрической искры.

4. Циклы ДВС с подводом теплоты

при постоянном давлении

Двигатели, в основу работы которых положен цикл с подводом теплоты при постоянном давлении (с постепенным сгоранием), имеют ряд преимуществ по сравнению с двигателями, работающими по циклу с подводом теплоты при постоянном объеме. Они связаны с тем, что в двигателях с постепенным сгоранием осуществляется раздельное сжатие топлива и воздуха. Поэтому здесь можно достигать значительно более высоких степеней сжатия. Воздух при высоких давлениях имеет настолько высокую температуру, что подаваемое в цилиндр топливо самовоспламеняется без всяких специальных запальных приспособлений. Кроме того, раздельное сжатие воздуха и топлива позволяет использовать любое жидкое дешевое топливо — нефть, мазут, смолы и проч.

В двигателях с постепенным сгоранием топлива воздух сжимается в цилиндре, а жидкое топливо распыляется сжатым воздухом от компрессора. Раздельное сжатие позволяет применять высокие степени сжатия (до e =20 ), исключая преждевременное самовоспламенение топлива. Постоянство давления при горении топлива обеспечивается соответствующей регулировкой топливной форсунки. Конструкция такого двигателя впервые была разработана немецким инженером Дизелем.

Рассмотрим идеальный цикл двигателя с подводом теплоты при постоянном давлении в pv— диаграмме рис.3

Рис.3

Этот цикл осуществляется следующим образом. Газообразное рабочее тело с начальными параметрами p1, v1, T1 сжимается по адиабате 1-2. В изобарном процессе 2-3 телу сообщается некоторое количество теплоты q1. В адиабатном процессе 3-4 происходит расширение рабочего тела до первоначального объема. В изохорном процессе 4-1 рабочее тело возвращается в первоначальное состояние с отводом в теплоприемник теплоты q2. Характеристиками цикла являются :

Степень предварительного расширения —

Количество подведенной и отведенной теплот определяются по формулам:

Термический кпд цикла в предположении постоянства теплоемкостей cp и cv и их отношения k=cp /cv будет:

Параметры рабочего тела в характерных точках цикла будут:

Источники:

http://vdvizhke.ru/sudovye-dvigateli-vnutrennego-sgoranija/idealnye-cikly-i-teplovye-processy-v-dvigateljah/idealnye-cikly-dvigatelej-vnutrennego-sgoranija.html
http://libraryno.ru/9-9-ideal-nye-cikly-dvigateley-vnutrennego-sgoraniya-teplotexnikavinogradov/
http://zdamsam.ru/b2884.html
http://zdamsam.ru/b2884.html
http://www.xumuk.ru/teplotehnika/025.html
http://avtogid4you.narod.ru/index/0-46

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector