10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как сделать из переменного тока постоянный

Простой преобразователь постоянного напряжения 12В в переменное 220В

Отключение электроэнергии в наших домах, увы, становится традицией. Неужели ребенку придется делать уроки при свече? Или как раз интересный фильм по телевизору, вот бы досмотреть.

Все это поправимо, если у вас есть автомобильный аккумулятор. К нему можно собрать устройство, называемое преобразователем постоянного напряжения в переменное (или по западной терминологии DC-AC преобразователь). На рис.1 и 2 показаны две основные схемы таких преобразователей.

Принципиальная схема

В схеме на рис.1 используются четыре мощных транзистора VT1. VT4, работающих в ключевом режиме. В одном полупериоде напряжения 50 Гц открыты транзисторы VT1 и VT4.

Ток от аккумулятора GB1 протекает через транзистор VT1, первичную обмотку трансформатора T1 (слева направо по схеме) и транзистор VT4.

Рис. 1. Принципиальная схема преобразователя постоянного напряжения 12В в переменное 220В.

Во втором полупериоде открыты транзисторы VT2 и VT3, ток от аккумулятора GB1 идет через транзистор VT3, первичную обмотку трансформатора TV1 (справа налево по схеме) и транзистор VT2.

В результате ток в обмотке трансформатора TV1 получается переменным, и во вторичной обмотке напряжение повышается до 220 6. При использовании 12-вопьтового аккумулятора коэффициент К= 220/12=18,3.

Генератор импульсов с частотой 50 Гц можно построить на транзисторах, логических микросхемах и любой другой элементной базе.

На рис.1 показан генератор импульсов на интегральном таймере КР1006ВИ1 (микросхема DA1). С выхода DA1 импульсы частотой 50 Гц проходят через два инвертора на транзисторах VT7, VT8.

От первого из них импульсы поступают через усилитель тока VT5 на пару VT2, VT3, со второго — через усилитель тока VT6 на пару VT1, VT4. Если в качестве VT1. VT4 использовать транзисторы с высоким коэффициентом передачи тока («супербета»), например, типа КТ827Б или мощные полевые транзисторы, например, КП912А, то усилители тока VT5, VT6 можно не ставить.

В схеме на рис.2 используются только два мощных транзистора VT1 и VT2, но зато первичная обмотка трансформатора имеет вдвое больше витков и среднюю точку.

Рис. 2. Схема выходной части импульсного преобразователя напряжения на двух мощных транзисторах.

Генератор импульсов в этой схеме тот же самый, базы транзисторов VT1 и VT2 подключаются к точкам А и Б схемы генератора импульсов на рис.1.

Рис. 3. Схема сигнализатора разряда аккумуляторной батареи.

Детали и налаживание

Время работы преобразователя определяется емкостью аккумулятора и мощностью нагрузки. Если допустить разряд аккумулятора на 80 % (такой разряд допускают свинцовые аккумуляторы), то выражение для времени работы преобразователя имеет вид:

где W — емкость аккумулятора, Ач; U — номинальное напряжение аккумулятора, В; Р — мощность нагрузки, Вт. В этом выражении учтен также КПД преобразователя, составляющий 0,85. 0,9.

Тогда, например, при использовании автомобильного аккумулятора емкостью 55 Ач с номинальным напряжением 12 В при нагрузке на лампочку накаливания мощностью 40 Вт время работы составит 10. 12 ч, а при нагрузке на телевизионный приемник мощностью 150 Вт 2,5—3ч.

Приведем данные трансформатора Т1 для двух случаев: для максимальной нагрузки 40 Вт и для максимальной нагрузки 150 Вт.

В таблице: S — площадь сечения магнитопровода; W1, W2 — количество витков первичной и вторичной обмоток; D1, D2 — диаметры проводов первичной и вторичной обмоток.

Можно использовать готовый силовой трансформатор, сетевую обмотку его не трогать, а домотать первичную обмотку. В этом случае после намотки нужно включить в сеть сетевую обмотку и убедиться, что напряжение на первичной обмотке равно 12 В.

Если использовать в качестве мощных транзисторов VT1. VT4 в схеме на рис.1 или VT1, VT2 в схеме на рис.2 КТ819А, то следует помнить следующее.

Максимальный рабочий ток этих транзисторов 15 А, поэтому если рассчитывать на мощность преобразователя свыше 150 Вт, то необходимо ставить либо транзисторы с максимальным током свыше 15 А (например, КТ879А), либо включать параллельно по два транзистора.

При максимальном рабочем токе 15 А мощность рассеяния на каждом транзисторе составит примерно 5 Вт, тогда как без радиатора максимальная рассеиваемая мощность — 3 Вт. Поэтому на этих транзисторах необходимо ставить небольшие радиаторы в виде металлической пластины площадью 15-20 см.

Выходное напряжение преобразователя имеет форму разнополярных импульсов амплитудой 220 В. Такое напряжение вполне подходит для питания различной радиоаппаратуры, не говоря уже об электрических лампочках.

Однако однофазные электромоторы с напряжением такой формы работают плохо. Поэтому включать в такой преобразователь пылесос или магнитофон не стоит.

Выход из положения можно найти, намотав на трансформаторе Т1 дополнительную обмотку и нагрузив ее на конденсатор Ср (на рис.2 показан пунктиром).

Этот конденсатор выбран такой величины, чтобы образовался контур, настроенный на частоту 50 Гц. При мощности преобразователя 150 Вт емкость такого конденсатора можно вычислить по формуле С = 0,25 / U2, где U -напряжение, образующееся на дополнительной обмотке, например, при U = 100 В, С = 25 мкФ.

При этом конденсатор должен работать на переменном напряжении (можно использовать металлобумажные конденсаторы К42У или подобные) и иметь рабочее напряжение не меньше 2U.

Такой контур забирает на себя часть мощности преобразователя. Эта часть мощности зависит от добротности конденсатора. Так, для металлобумажных конденсаторов тангенс угла диэлектрических потерь составляет 0,02. 0,05, поэтому КПД преобразователя снижается примерно на 2. 5%.

Во избежание выхода из строя аккумуляторной батареи преобразователь не мешает оборудовать сигнализатором разряда. Простая схема такого сигнализатора показана на рис.3.

Транзистор VT1 является пороговым элементом. Пока напряжение аккумуляторной батареи в норме транзистор VT1 открыт и напряжение на его коллекторе ниже порогового напряжения микросхемы DD1.1, поэтому генератор сигнала звуковой частоты на этой микросхеме не работает.

Когда напряжение батареи опускается до критического значения, транзистор VT1 запирается (точка запирания устанавливается переменным резистором R2), начинает работать генератор на микросхеме DD1 и акустический элемент НА1 начинает «пищать». Вместо пьезоэлемента можно применить динамический громкоговоритель малой мощности.

После использования преобразователя аккумулятор необходимо зарядить. Для зарядного устройства можно использовать тот же трансформатор Т1, но количества витков в первичной обмотке недостаточно, так как она рассчитана на 12 В, а нужно, по крайней мере, 17 В.

Поэтому при изготовлении трансформатора следует предусмотреть дополнительную обмотку для зарядного устройства. Естественно, при зарядке аккумулятора схему преобразователя необходимо отключить.

В. Д. Панченко, г.Киев, Украина.

  • PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН
  • Сборка печатных плат от $88 + БЕСПЛАТНАЯ доставка по всему миру + трафарет
  • Онлайн просмотрщик Gerber-файлов от PCBWay!

я сделал преобразователь так: купил на рынке дешёвые стрелочные часы(только где стрелка не в секундном ритме передвигается, а в постоянном) и вынял из них плату, это уже и есть простой китайский вариант преобразователя. Потом добавил к этой плате цепь из четырёх диодов и двух транзисторов(для нагрузки) и следом трансформатор(12-220в), частоты и силы тока хватает для работы 60 ватной лампы, питал транзисторы 12в, а питание платы так и оставил от батарейки, преимущество в том, что можно ставить любые транзисторы и питать их любым током(параметры самому подбирать) пробуйте, если интиресно, схема неприхотливая, и очень простая.

Всем доброго времени суток! Скажите Уважаемые знатоки а данную схему возможно «апгрейдить» на мощность 12 -15 Квт?

#KriKs, наверное, тогда нужно сюда поставить тиристоры на выход.

Как получить постоянное напряжение из переменного

Осциллограмма постоянного напряжения

Давайте для начала уточним, что мы подразумеваем под “постоянным напряжением”. Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток) – это такой ток, параметры,свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.

Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации:

Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).

Для того, чтобы преобразовать переменное однофазное напряжение одного значения в однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный трансформатор. А для того, чтобы преобразовать в постоянное пульсирующее напряжение, мы с вами после трансформатора подключали Диодный мост. На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.

Но как же нам из пульсирующего постоянного напряжения

получить самое что ни на есть настоящее постоянное напряжение?

Для этого нам нужен всего один радиокомпонент: конденсатор. А вот так он должен подключаться к диодному мосту:

В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.

Зависимость пульсаций от емкости конденсатора

Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:

Рассмотрим первый. Замеряем его номинал с помощью нашего LC – метр. Его емкость 25,5 наноФарад или 0,025микроФарад.

Цепляем его к диодному мосту по схеме выше

И цепляемся осциллографом:

Как вы видите, пульсации все равно остались.

Ну что же, возьмем конденсатор емкостью побольше.

Получаем 0,226 микрофарад.

Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.

А вот собственно и осциллограмма

Не… почти, но все равно не то. Пульсации все равно видны.

Берем наш третий конденсатор. Его емкость 330 микрофарад. У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.

Цепляем его к диодному мосту снимаем с него осциллограмму.

А вот собственно и она

Ну вот. Совсем ведь другое дело!

Итак, сделаем небольшие выводы:

– чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.

– чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью пассивных фильтров, а также используют интегральные стабилизаторы напряжения, которые выдают чистейшее постоянное напряжение.

Как подобрать радиоэлементы для выпрямителя

Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд? Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт? А вот и не угадали! Со вторичной обмотки трансформатора мы будем получать действующее напряжение.

Umax – максимальное напряжение, В

Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула здесь. Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!

Читать еще:  Как выглядит машина в тонировке 50 прозрачности

Кстати, у меня получился 17 Вольтовый источник постоянного напряжения, так как у трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).

Ну и напоследок, чтобы лучше запомнилось:

Читаем в обязательном порядке продолжение этой статьи.

Несколько слов об инверторах, или как из постоянного тока сделать переменный

Преобразование одного вида тока в другой требуется довольно часто. Способ превращения переменного в постоянный прост: применяется диодный мост и сглаживающий конденсатор.

А вот как из постоянного тока сделать переменный, знают не все. Между тем, в сфере электротехники такое преобразование, как будет показано далее, также выполняется довольно часто.

Способы получения электричества

Электроток производят с помощью таких устройств:

  1. механические генераторы. Состоят из двух частей: неподвижного статора и вращающегося внутри него ротора. Статор — постоянный или электрический магнит, ротор содержит обмотку из провода. При вращении ротора пересекающий его обмотку магнитный поток все время меняется, что приводит, согласно закону электромагнитной индукции, к возникновению ЭДС. Ротор приводится во вращение внешней силой: двигателем (автомобиль), потоком воды (гидроэлектростанция), давлением пара (атомные и тепловые электростанции), ветром и т.д. Ток на выходе генератора будет переменным. Для получения постоянного требуется дополнительное механическое устройство — коллектор;
  2. гальванические элементы (ГЭ) и аккумуляторы. Превращают в электричество химическую энергию за счет окислительно-восстановительной реакции. Простейший ГЭ: медная и цинковая пластины, погруженные, соответственно, в растворы сернокислой меди и сульфата цинка, изолированные друг от друга пористой перегородкой (элемент Якоби-Даниэля). В результате окисления каждый атом цинка на цинковой пластине (анод) отдает 2 электрона, переходящие по электрической цепи на медную пластину (катод) и восстанавливающие на нем положительно заряженные ионы меди. ГЭ называют первичными химическими источниками тока (ХИТ). Аккумуляторы — вторичные ХИТ. Принцип работы схож, но химическую энергию им сначала нужно сообщить, подключив систему к источнику тока. Заряжать и разряжать аккумулятор можно многократно, тогда как ГЭ используется только один раз;
  3. фотоэлементы. Действие основано на способности полупроводников генерировать ток при облучении светом. В этом можно убедиться, срезав верхнюю часть корпуса транзистора и поместив его под солнечные лучи: на выводах прибора мультиметр покажет напряжение;
  4. термоэлементы. Действие основано на эффекте Зеебека: в замкнутой цепи из двух проводов, выполненных из разных металлов, при нагревании одной из двух зон контакта между ними возникает ЭДС. Такие цепи называют термопарами и в основном применяют в качестве термодатчиков. К примеру, для измерения температур от +0 0 С до +100 0 С применяют пару медь – константан, в диапазоне +100 0 С – +600 0 С — серебро и константан.

Как из постоянного сделать переменный?

Устройство, преобразующее постоянный ток в переменный, называют инвертором. Существует несколько видов этих аппаратов.

Инвертор с электродвигателем

Вал двигателя постоянного тока подсоединяется к скользящему контактному узлу, состоящему из двух частей:

  • вращающейся: состоит из нескольких кольцевых и сегментных пластин, упакованных в форме цилиндра;
  • неподвижной: графитовые щетки в щеткодержателях.

Одна пара щеток подключена к источнику постоянного тока, другая — к цепи переменного тока. Первая пара контактирует с кольцевыми пластинами, другая — с сегментными.

Часть последних электрически соединена с положительным кольцом, другая — с отрицательным. При вращении двигателя щетки цепи переменного тока по очереди контактируют с сегментными пластинами, в результате чего направление тока постоянно меняется. Более качественный переменный ток дает связка «двигатель постоянного тока – механический генератор», но у этого инвертора ниже КПД.

Релейный инвертор

Тут же пружина отбрасывает сердечник в исходное положение, так что к упомянутому контакту подключается катод. Такие колебания повторяются многократно, пока на катушку соленоида подается постоянный ток.

Электронный инвертор

С появлением и постепенным удешевлением полупроводников электромеханические инверторы перекочевали в разряд устаревших.

В их электронном аналоге ток перенаправляется ключевыми транзисторами, управляемыми микросхемой. Именно такие инверторы применяются в инверторных сварочных аппаратах, импульсных блоках питания, ИБП и др.

При использовании особых быстро переключающихся транзисторов такой инвертор способен создать из постоянного тока переменный с частотой в десятки кГц. Это позволяет уменьшить габариты трансформатора и потери в нем (сварочные аппараты, импульсные блоки питания). Существует несколько видов электронных инверторов. Они описываются в последнем разделе.

Переменный ток и его свойства

Переменный ток циклически меняет направление и силу, характеризуется следующими параметрами:

  1. частота. Число циклов (периодов) в секунду. Например, частота тока в сети составляет 50 Гц;
  2. амплитуда. Максимальное отклонение напряжения и силы тока от нуля. Так, сетевое напряжение 50 раз в секунду меняет значение от -311 В до 311 В;
  3. действующее значение. Это напряжение или сила эквивалентного постоянного тока, то есть такого, который вызывает в проводнике такое же тепловыделение, как и данный переменный. К действующему значению прибегают с целью упрощения расчетов: работать с постоянно изменяющимися величинами крайне неудобно. Например, если в формуле записать действительное значение переменного сетевого напряжения, изменяющегося от -311 В до 311 В по синусоидальному закону, получится уравнение с тригонометрическими функциями либо комплексными числами. Гораздо проще оперировать постоянным действующим значением в 220 В;
  4. форма. Сетевой ток, производимый механическими генераторами, имеет синусоидальную форму. На выходе инвертора она может быть остроугольной, ступенчатой и т. д.

Переменный ток уступает постоянному в следующем:

  1. он менее качественный. Так, сварной шов получается более прочным и надежным, если сварка осуществлялась постоянным током. Качественнее работает и электроника;
  2. при частоте в 50 Гц — более опасен. Нарушения в организме вызывает уже при силе в 50 мА, тогда как постоянный — при силе в 300 мА. Однако, с повышением частоты переменный ток становится уже не таким опасным. Так, выдающийся изобретатель Никола Тесла на публичных опытах пропускал через себя переменный ток большого напряжения (светилась зажатая в руке лампа), предварительно подняв его частоту до нескольких мегагерц;
  3. сопротивление проводников переменному току выше, чем постоянному. Разъяснение этому будет дано ниже.

Но есть у переменного тока и полезная особенность: создаваемое им магнитное поле также является переменным, а значит, оно способно наводить в проводниках ЭДС (закон электромагнитной индукции).

Переменный ток делает возможным работу таких устройств:

  1. трансформаторы. За счет повышения напряжения значительно сокращаются потери в линиях электропередач;
  2. индукционные нагреватели;
  3. дроссельные фильтры. Дроссель — катушка. Создаваемое ею переменное магнитное поле противодействует переменному току, то есть дроссель выступает в качестве сопротивления. От индуктивности катушки зависит частота тока, которому она сильнее всего противодействует. Эта особенность позволяет глушить дросселем высокочастотные помехи в сети.

Наличием переменного магнитного поля объясняется и упомянутое выше увеличение сопротивления проводника. В нем полем также наводится ЭДС, противодействующая данному переменному току. Эта ЭДС выше в центре проводника, где сконцентрированы силовые линии поля, соответственно, носители заряда вытесняются наружу (поверхностный или скин-эффект).

В итоге вместо всего сечения проводника ток пропускает только некоторая его часть, отчего и возрастает сопротивление. Еще отличие переменного тока от постоянного — способность протекать по цепи с последовательно включенным конденсатором. Для постоянного тока разрыв между обкладками непреодолим, тогда как переменный протекает почти свободно, заряжая обкладки то с одним, то с другим знаком.

Схемы преобразователей

Инверторы классифицируются по принципу работы, форме и схеме.

Принцип действия

По данному признаку устройства делятся на два типа: автономные и инверторы, ведомые сетью.

Автономные делятся на несколько подгрупп, объединяющих инверторы:

  • напряжения (ИН): устанавливаются в большинстве ИБП;
  • тока;
  • резонансные.

Инверторы, ведомые сетью иначе называются зависимыми. Применяются, к примеру, в качестве силовых преобразователей на электровозах.

Схемы

Существует несколько основных схем инверторов:

  1. мостовой ИН без трансформатора. Применяется в ИБП мощностью свыше 500 ВА и в различных устройствах, рассчитанных на 220 или 380 В;
  2. ИН с нулевым выводом трансформатора. Применяется в ИБП мощностью 250-500 ВА, в установках напряжением 12 или 24 В и мобильных радиопередатчиках;
  3. мостовой ИН с трансформатором. Используется в ИБП ответственных объектов с потребляемой мощностью от нескольких кВА до десятков.

Принципиальная схема преобразователя

Форма

По форме выходного напряжения инверторы делятся на:

  1. ИН с прямоугольным выходным сигналом. С целью обеспечить требуемую пропорциональность Uвых. управляющая схема варьирует относительную длительность импульсов ключами либо сдвигает по фазе сигналы управления противофазных групп ключей (зависит от конструктивных особенностей переключающего модуля);
  2. ИН со ступенчатым выходным напряжением. Обрабатывают входной сигнал в два этапа: путем высокочастотного преобразования формируется однополярный ступенчатый сигнал, близкий к синусоиде с уменьшенным вдвое периодом, а при помощи мостового преобразователя он превращается в разнополярный с требуемым периодом;
  3. ИН с синусоидальным выходным напряжением. Входной постоянный ток также обрабатывается в 2 этапа: путем высокочастотного преобразования формируется постоянное напряжение, почти равное амплитуде требуемого переменного напряжения, а затем мостовым инвертором, действующим по принципу многократной широтно-импульсной модуляции.

Полученное постоянное напряжение преобразуется в близкое к синусоидальному переменное.

Видео по теме

О том, как из постоянного тока сделать переменный и наоборот, в видео:

У каждой разновидности тока есть и преимущества, и недостатки. Потому инверторы и выпрямители применяются достаточно часто. В статье приведены только основные схемы преобразователей, всего же их довольно много.

Что такое диод или как из переменного тока получить постоянный?

Выпрямитель нужен, чтобы из переменного тока получить постоянный. Существует несколько схем выпрямителей на полупроводниковых диодах, а в общем их делят на две группы: однополупериодные и двухполупериодные. Эти названия говорят о том сколько полуволн переменного напряжения поступает в нагрузку – одна или две.

Немного определений и теории

Начнем с того, что разберемся с какими определениями нам придется столкнуться.

В электросети протекает переменный ток. Его величина изменяется по синусоидальному закону, это также называют «синусоидальное напряжение» или просто «синусоида». Такое напряжение (ток) изменяется плавно от нуля до амплитудного значения, затем обратно до нуля и опять до амплитудного значения, но с обратным знаком. В одном периоде синусоиды есть две полуволны — «прямая» и «обратная» или «верхняя» и «нижняя».

Но на практике зачастую ток непостоянен, а изменяется в процессе работы потребителя (нагрузки), а также на выходе выпрямителей есть пульсации, а у гальванических элементов просадки под нагрузкой. Получается, что сам по себе «постоянный ток», так как сказано в «определении» используется далеко не везде. Когда говорят «блок питания постоянного тока» часто подразумевают постоянное напряжение.

Здесь нужно выделить еще несколько понятий:

1.Однонаправленный ток — протекает в одном направлении, может быть произвольным по величине.

2.Выпрямленное напряжение (или ток) – постоянно по знаку, но может изменяться по величине. Если не используются фильтры, то пульсирует с удвоенной частотой переменного напряжение, которое выпрямляли. Так на выходе выпрямителя сетевого напряжения частота пульсаций будет 50×2=100 Гц.

3.Стабилизированное напряжение (или ток) — постоянно по знаку и величине.

В англоязычной технике и литературе переменный ток обозначается как AC (alternative current), а постоянный — DC (direct current).

Полупроводниковые диоды и выпрямители

В современных электронных устройствах для выпрямления используются полупроводниковые диоды.

Диодом в широком смысле называется любое устройство, у которого есть два вывода. Однако если говорить более конкретно, то полупроводниковый диод — это устройство, в котором сформирован лишь один p-n-переход.

Основной особенностью полупроводниковых диодов является то, что они проводят ток в одном направлении, а если проложить обратное напряжение (т.н. «обратное смещение»), то ток не проводится до тех пор, пока не наступает тепловой или электрический пробой p-n-перехода с последующим выходом из строя элемента (за исключением стабилитронов, например). Различают множество видов диодов: выпрямительные, импульсные, детекторные, ограничительные и другие, но сегодня нас интересуют именно выпрямительные диоды.

Читать еще:  Особенности выбора очков с антибликовым покрытием для компьютера

Диоды еще называют «полупроводниковый неуправляемый вентиль», неуправляемый он, потому что вы не можете дать команду чтобы начал или прекратил протекать электрический ток.

Итак, выпрямительный диод – это устройство, которое пропускает ток в одном направлении. Это явление используется для преобразования переменного тока в постоянный, а также для изолирования цепей постоянного тока, например, когда нужно подать несколько сигналов, не зависящих друг от друга, от разных источников.

На схеме диод обозначается в виде стрелки, направление которой указывает куда будет протекать ток. В старых схемах чаще встречается обозначение в вид стрелки в кружочке.

Как это работает?

Как отмечалось выше, диод состоит из двух областей, p и n — их называют анодом (p-область) и катодом (n-область). Между n- и p-областью находится запирающий слой — так называемый потенциальный барьер.

В прямом смещении p-n-перехода, когда к аноду подключают полюс, а к катоду минус источника питания то этот запирающий слой сужается и через него начинает протекать ток. Но просто подать напряжение недостаточно, важно чтобы его величины было достаточно, для открытия кремниевых диодов нужно 0.7-0.8 вольт, а для германиевых — 0.3-0.4 вольта.

При обратном включении, то есть при подключении плюса к катоду, а минуса к аноду , всё происходит наоборот — запирающий слой расширяется, и носители заряда не могут его преодолеть, соответственно ток не протекает.

На реальных диодах катод обычно помечается полосой или кольцом.

Особенности диода отлично иллюстрирует вольт-амперная характеристика, сокращенно её называют «ВАХ».

На рисунке выше Красным цветом выделены участки и виды пробоев (лавинный, туннельный и тепловой) на обратной ветви. В правой верхней части вы видите прямую ветвь ВАХ, т.е. зависимость тока от напряжения в прямом смещении.

Из неё вы должны понять то, что ток через диод при малом напряжении почти не протекает, но когда оно достигает определенной величины начинает протекать, при этом сила тока не имеет линейной зависимости от приложенного напряжения (при малом увеличении напряжения происходит сильное приращение тока), и ограничивается только сопротивлением нагрузки. При обратном смещении ток практически не протекает (очень незначительный) и так происходит до тех пор, пока не наступит пробой. Различают 3 вида пробоя:

  • Лавинный пробой – при нём диод начинает пропускать ток, он обратимый, то есть если с диода снять напряжение, то он не сгорит.
  • Туннельный пробой также обратим Этот и предыдущий вид используют в стабилитронах. Это другой вид диодов, они предназначены для работы в обратном смещении, а этот участок вольт-амперной характеристики у стабилитронов шире, чем у выпрямительного диода.
  • Тепловой пробой – при нём происходит необратимое разрушение p-n-перехода. Диод либо пробивает, т.е. он становится проводником, либо перегорает, в этом случае происходит обрыв цепи.

Схемы выпрямителей

В однофазных цепях используется одна из трёх схем выпрямления переменного тока, они носят такие названия:

  • Однополупериодный выпрямитель, а в технической литературе можно встретить сокращенный вид «1ф1п», что обозначает «1 фаза 1 полупериод».
  • Двухполупериодный выпрямитель, он же «схема Гретца», сокращенно — 2ф2п.
  • Двухполупериодный выпрямитель со средней точкой. Используется реже, чем предыдущая, так как требует использовать трансформатор со средней точки (отвод от середины обмоток).

Однополупериодный выпрямитель состоит из диода, последовательно включенного с нагрузкой. Здесь в нагрузку Rн поступает, как ни странно, один полупериод от питающего напряжения, вторые полпериода или обратная полуволна синусоиды через диод не проходит. Схема хороша тем, что нужен только один диод, но у неё ряд недостатков: напряжение на нагрузке снижается в 2 раза и высокий коэффициент пульсаций. Для их сглаживания нужен конденсатор неоправданно большой ёмкости, что повышает и габариты, и конечную стоимость изделия.

Двухполупериодный выпрямитель или диодный мост состоит уже из четырёх диодов. Здесь они работают «по диагонали», то есть одну полуволну проводят левый верхний и правый нижний диод, а обратную – левый нижний и правый верхний диоды (положения указаны условно, относительно приведенной схемы). Напряжение в нагрузке равно напряжению на входе моста, но оно уже не переменное, а выпрямленное пульсирующее. Чтобы сгладить пульсации параллельно нагрузки устанавливают конденсатор (один или несколько, соединенных параллельно). При этом используются электролитические конденсаторы, из-за их большой ёмкости при относительно небольших размерах.

Второй вариант двухполупериодного выпрямителя — это выпрямитель со средней точкой. Здесь к средней точке трансформатора присоединяется один вывод нагрузки, а ко второму выводу нагрузки присоединяются катоды двух диодов. Напряжение на концах вторичной обмотки относительно средней точки находится в противофазе (условно на диаграмме они обозначены как Uвходное1 и Uвходное2).

Так как напряжения сдвинуты друг относительно друга на половину периода и диоды пропускают лишь по одной его полуволне, то на нагрузку попадает выпрямленное двухполупериодное напряжение Uвыходное, как в предыдущем варианте. Вы можете видеть что в первые полпериода через диод VD2 протекает ток, во вторую половину — диод закрывается и начинает протекать ток через диод VD1.

Преимущества такой схемы — меньше потерь из-за меньшего числа ключей, но недостаток весьма серьезный — нужен трансформатор со средней точкой, если в производственных масштабах это не составляет особых проблем, то для радиолюбителя может оказаться сложным найти такой. Но

Заключение

На этом закончим статью о выпрямителях и диодах. Если вам что-то осталось непонятным или вы бы хотели раскрыть подробнее какой-то конкретный вопрос — пишите об этом в комментариях, не забывайте ставить «лайки» и подписываться на канал, ведь это очень важно для нас.

Как провести переделку сварочного аппарата с переменного тока на постоянный

Как выбрать качественное оборудование? Как не ошибиться при покупке? Эти и другие вопросы мучают каждого сварщика, которому известно о сложности выбора сварочного аппарата. О них мы и поговорим в этой статье.

Есть 2 вида современных сварочных механизмов:

  • Агрегаты переменного тока (трансформаторы для сварки);
  • Механизмы постоянного тока (выпрямители, инверторы).

Первые сегодня применяют гораздо реже. Хотя четверть века назад такие аппараты были на пике своей популярности. Это происходило из-за того, что альтернативы просто не существовало.

Актуальность вопроса

Главным вопросом сварщиков считается такой: какой ток должен быть у аппарата, чтобы он работал долго и качественно – неустойчивый или статичный? Раньше было гораздо проще, потому что все аппараты работали на переменке.

Не стоял трудный выбор, который возник буквально 25 лет назад. Обычному мастеру сегодня крайне сложно определить, что будет работать лучше – инверторы, трансформаторы или выпрямители. Стоит остановиться на этом вопросе подробнее.

Что же собой представляет переменный ток? Это стандартный электрический импульс, который выходит из розеток.

Аппараты старого образца работали именно по такому принципу: они подключали механизм и на выходе получали пару сотен Ампер сварочного тока. Этого хватало для успешной работы.

Сегодня технологии прогрессируют, и появляются аппараты, способные менять ток с переменного на постоянный. Но вот в чем подвох: инвертор переменного тока на самом деле меняет его на статичный. А это понятно далеко не всем.

Наша цель в этой статье – рассказать, что собой представляют и те, и другие аппараты. Кроме этого, мы попытаемся обосновать важность переделки сварочного оборудования с переменного тока на постоянный.

Что происходит на самом деле?

Многие сварщики были в недоумении, когда на рынке появились аппараты нового образца. Трансформаторы оказались не так просты, как их предшественники.

Причиной этому стали особенности переменного тока. Нестабильное горение дуги приводило к тому, что швы получались кривыми. Особенно это касалось труда новичков.

Среди недостатков таких механизмов выделяли:

  • Сильный шум при работе;
  • Неаккуратность сварки, разбрызгивание металла;
  • Сложность работы с аппаратом.

Возникает вполне логичный вопрос: «Не лучше ли пользоваться старым оборудованием, которое генерирует переменный ток?». Над этим неоднозначным вопросом думают многие мастера – как с большим, так и маленьким опытом.

Что уж говорить о новичках! Попытаемся разобраться в этом вопросе.

Начнем с достоинств трансформатора. Их основные преимущества, которые перекрывают недостатки:

  • Невысокая стоимость аппарата;
  • Хорошая работа с металлом, имеющим окисную пленку – нержавейкой и алюминием;
  • Могут работать с грязными деталями, если нет возможности их очистки;
  • Не имеют особых условий использования и хранения;
  • Неприхотливы к месту выполнения работ;
  • Обладают хорошей мощностью и могут варить даже толстый металл.

Как видим, плюсов гораздо больше. А значит – такая техника заслуживает внимания.

Сварочная дуга: что это?

Мы говорили ранее, что во время работы дуга может гореть неустойчиво. Процесс часто заметен невооруженным глазом: сварщик выполняет свою работу, а дуга при этом отклоняется от заданной оси. Как итог – шов получается неровным.

Новички часто делают много ошибок, потому что не знают всех нюансов. Это чревато быстрому погасанию дуги и некорректной работе.

Такие моменты наталкивают на мысль о ненужности покупки трансформаторов мастерам без опыта. Но всё обстоит несколько иначе: если вы научитесь работать с таким сложным механизмом, то в будущем у вас не возникнет трудностей с любым другим аппаратом.

Если вы твердо решили отказаться от агрегатов с переменным током — мы посоветуем, что предпринять. Мы подскажем, что делать, когда вы уже купили трансформатор, но пожалели об этом. Наша цель – рассказать, как правильно переделать такой механизм.

Для чего необходимы изменения?

Как вы уже поняли, нельзя однозначно сказать, какой же из аппаратов лучше – работающий на постоянном, либо на переменном токе. Это два разных устройства со своими достоинствами и недостатками, которые стоит учитывать при работе.

Наш совет однозначный: покупайте универсальное оборудование с двумя модификациями.

На рынке есть такие устройства. Но они достаточно дорогие, поэтому не каждый может их купить. Опытные мастера могут смело брать такой агрегат. Ну а если вы новичок и не планируете проводить работы слишком часто – купите трансформатор и переделайте его.

Последний работает очень слаженно. Немного изменив его, вы получите хороший аппарат, способный переключаться с переменного на постоянный ток. Это устройство станет надежным помощником в любом сварочном деле.

Как переделать механизм в домашних условиях

Процесс кажется очень сложным, но это не совсем так. У вас все получится, если вы уже имеете небольшой опыт в сварке. Преимуществом переделки будет то, что не нужно покупать еще один аппарат с постоянным током.

Вы соберете его своими руками: он будет выглядеть как дополнение к трансформатору. Принцип работы аппарата достаточно простой. Для этого вы подключаете его к трансформатору, и он меняет переменный ток на постоянный.

Предлагаем несложную схему данной конструкции.

Объясним, что же обозначает наш рисунок. Сборка небольшого выпрямителя происходит на диодах (VD1-VD4). L1 – это дроссель. При помощи последней дуга легко воспламенится и работает гораздо эффективнее.

Этот аксессуар не будет вмонтирован в ваш трансформатор. Он представляет собой отдельное устройство. Чтобы последний заработал, необходимо его подключить переменному трансформатору при помощи проводов.

Читать еще:  Светотехника своими руками что под запретом

Важные моменты, которые нужно учитывать при работе:

  • Выбирайте диоды моделей Д161-320, Д161-250 либо B200. Их нужно аккуратно прикрепить к радиаторам.
  • Собирайте дроссель на сердечнике, что относится к трансформатору ТС-270. Он приобретается у других сварщиков либо берется с лампового телевизора.
  • Устраняйте все существующие обмотки и меняйте их на более новые. Оптимальное количество витков – до 30.
  • В работе применяйте провода, изготовленные из меди. В идеале площадь сечения должна быть от 16 до 22 квадратных миллиметров.
  • Прокладки из текстолита размещайте между частями сердечника. Оптимальная толщина первых – от 0.3 до 0.5 миллиметров.

Вот так несложно можно улучшить аппарат и сделать его работающим как на постоянном, так и на переменном токе.

Подведем итоги

Каждый человек, занимающийся сварочными работами, мечтает об универсальном механизме, работающем на постоянном и переменном токе. Но может ли хороший аппарат быть недорогим? Последнее условие выполнить практически нереально, ведь готовый механизм стоит немаленьких денег.

Конечно, если вы опытный сварщик, у которого много заказов каждый день – это хороший вариант. Но что делать новичку? Ведь он зачастую не готов к большим растратам.

В этом случае на помощь придут золотые руки и пара часов свободного времени. Выберите недорогой трансформатор, вооружитесь поддержкой опытного товарища – и у вас получится создать уникальное устройство.

Аппарат в итоге сможет варить на постоянном токе, а вы будете довольны его работой. Даже если дополнение вам не пригодится, его всегда удобно иметь под рукой. Все детали для такой конструкции легко приобрести. А, может, они и вовсе пылятся у вас в гараже.

Как сделать из переменного тока постоянный

Разработка и производство сервоприводов,
бесколлекторных и вентильных двигателей, движитель (трастер) для телеуправляемого необитаемого подводного аппарата (ТНПА, ROV)

Мелкосерийное литье изделий из пластика на термопластавтоматах
Узнать цену!

1.3. Преобразование переменного тока

в постоянный и постоянного в переменный

Электроэнергия вырабатывается на электростанциях синхронными генераторами, т. е. генераторами переменного тока, который удобно преобразовывать трансформаторами и передавать на большие расстояния. Между тем имеется ряд технологических процессов, требующих постоянного тока: электролиз, зарядка аккумуляторов и т. д. Поэтому часто возникает необходимость преобразования переменного тока в постоянный и обратно.

Широко распространенные в начале XX в. электромашинные преобразователи (одноякорные преобразователи и мотор-генераторные установки) уступили свое место более компактным и бесшумным полупроводниковым выпрямителям. Благодаря высоким

Рис. 1.12. Двухтактный однофазный выпрямитель

эксплуатационным показателям и малым габаритам полупроводниковых выпрямителей появилась тенденция к замене генераторов постоянного тока синхронными генераторами, имеющими на выходе полупроводниковый выпрямитель. Таким образом, появились новые классы машин — трансформаторов и синхронных,— постоянно работающих с выпрямителями. Однако работа электрической машины на выпрямитель имеет особенности, которые надо учитывать при проектировании этих машин и анализе процессов, происходящих в них.

Преобразование переменного тока в постоянный производится с помощью полупроводниковых вентилей, имеющих одностороннюю проводимость. На рис. 1.12 и 1.13 показаны наиболее распространенные схемы выпрямителей: однофазного (рис. 1.12, а) и трехфазного (рис. 1.13, а) и кривые напряжений и токов (рис. 1.12,5. в, рис. 1.13,6, в соответственно). Через полупроводниковые вентили (диоды) ток может проходить только тогда, когда положительный потенциал приложен к аноду (в направлении вершины треугольника на рис. 1.12, а), в связи с чем напряжение на нагрузке — пульсирующее.

Рис. 1.13. Трехфазный мостовой выпрямитель

При однофазном выпрямлении пульсации напряжения на на^-грузке весьма значительны, а частота переменной составляющей в 2 раза выше частоты переменного тока (рис. 1.12, б). При трехфазном мостовом выпрямлении схема получается шеститактной и пульсации напряжения невелики — менее 6% от постоянной составляющей (рис. 1.13, б).

Ток в цепи нагрузки обычно сглажен сильнее, чем напряжение, так как цепь нагрузки часто содержит индуктивность, представляющую большое сопротивление для переменной составляющей тока и малое — для постоянной.

Если считать ток в нагрузке /

Во время коммутации напряжение на нагрузке СЛг=0,5(е+ 2ь) и в однофазном выпрямителе равно нулю (рис. 1.15, б). Следовательно, из-за коммутации уменьшается выпрямленное напряжение и увеличивается его пульсация. Поскольку угол коммутации у тем больше, чем больше ток нагрузки Id и индуктивное сопротивление ха, для повышения качества выпрямителя желательно, чтобы питающая его машина имела небольшое индуктивное сопротивление. В трансформаторе ха равно индуктивному сопротивлению, обусловленному потоками рассеяния, и определяется из опыта короткого замыкания В синхронном генераторе

где Ха» и xq« — сверхпереходные индуктивности по продольной и поперечной осям соответственно, учитывающие наличие тока в демпферной обмотке.

Таким образом, синхронные генераторы, предназначенные для работы на выпрямитель, должны быть рассчитаны на работу с несинусоидальным током и иметь демпферную обмотку.

Коэффициент мощности генератора, работающего на нерегулируемый выпрямитель,

Рис. 1.16. Схема однофазного инвертора

где v«0,9 — коэффициент искажения; >ф«0,5у— угол сдвига тока относительно первой гармоники напряжения.

Преобразование постоянного тока в переменный производится с помощью инверторов, в которых используются управляемые вентили: транзисторы, тиристоры и др.

Схема однофазного инвертора представлена на рис. 1.16. Включение вентилей инвертора производится поочередно каждый полупериод таким образом, чтобы направление тока во вторичной обмотке трансформатора было противоположно направлению ЭДС в этой обмотке, т. е. чтобы энергия передавалась от источника постоянного тока в сеть переменного тока.

Инверторы имеют сравнительно сложную систему автоматического управления, что ведет к повышению их стоимости и уменьшению надежности по сравнению с неуправляемыми выпрямителями.

Кроме того, в инверторе возможно появление режима сквозного горения, когда ток в обмотке совпадает по фазе с ее ЭДС. Такой режим возможен либо при неисправности в системе управления, либо при слишком большом угле коммутации. При сквозном горении обычно ток возрастает до недопустимого значения и обычно полупроводниковые вентили выходят из строя. Большое число элементов в системе управления и возможность аварийного режима сквозного горения делают надежность инверторов значительно ниже, чем у неуправляемых выпрямителей: наработка на отказ уменьшается в 50. 100 раз.

Перспективна идея питания от инверторов асинхронных и синхронных двигателей. Изменяя частоту включения вентилей, можно менять частоту напряжения на выводах статора двигателя и тем самым экономично (без сопротивлений) регулировать угловую скорость. Такой способ регулирования скорости называется частотным. Однако низкая надежность систем с инверторами — преобразователями частоты препятствует их широкому применению.

В настоящее время частотное регулирование скорости применяется только в особых условиях, где не могут работать двигатели постоянного тока, погруженные в жидкость: двигатели судов, нефтепроводов, двигатели шаровых мельниц и т. д.

Рис. 1.17. Устройство машины постоянного тока

Имеются экспериментальные образцы с частотным регулированием в крановом и тяговом электрооборудовании.

В машине постоянного тока имеется своеобразный преобразователь— коллектор, который в генераторном режиме является выпрямителем, а в двигательном — преобразователем частоты.

Конструкция машины постоянного тока сходна с конструкцией обращенной синхронной машины, у которой обмотка якоря находится на роторе, а магнитные полюсы неподвижны. При вращении якоря (ротора) в проводниках обмотки индуцируется ЭДС, направленная так, как это показано на поперечном разрезе рис. 1.17, а.

В проводниках, расположенных по одну сторону линии симметрии, разделяющей полюсы, ЭДС направлена всегда в одну сторону, независимо от угловой скорости. При вращении одни проводники уходят под другой полюс, на их место приходят другие проводники, а в пространстве, под полюсом одной полярности, картина почти неподвижна, только одни проводники сменяются другими. Следовательно, возможно получить практически неизменную ЭДС от этой части обмотки.

Постоянная ЭДС получается с помощью скользящего контакта между обмоткой и внешней электрической цепью.

Проводники соединяются в витки с шагом ушт, как в машинах переменного тока, а затем витки соединяются последовательно один за другим, образуется замкнутая обмотка.

В половине обмотки (в двухполюсной машине) наводится ЭДС одного знака, а в другой — противоположного, как показано на эквивалентной схеме обмотки (рис. 1.17, б). По контуру обмотки ЭДС в ее частях направлены встречно и взаимно уравновешиваются. Вследствие этого при холостом ходе генератора, т. е. при отсутствии внешней нагрузки, по обмотке якоря ток не проходит.

Внешняя цепь соединяется с якорем через щетки, устанавливаемые на геометрической нейтрали.

Для улучшения контакта щетки выполняются в виде прямоугольных графитовых брусков, а скользят они по поверхности коллектора, который собирается из медных пластин, изолированных друг от друга.

В крупных машинах начало и конец каждого витка присоединяются к коллекторным пластинам; в малых машинах пластин

меньше, чем витков, и поэтому между двумя пластинами припаивается часть обмотки из нескольких витков — секция.

Под нагрузкой через проводники якоря проходит ток, направление которого определяется направлением ЭДС.

В связи с тем что ток нагрузки постоянен, в витках обмотки якоря ток имеет форму, близкую к прямоугольной (рис. 1.18, а).

При переходе витка из одной параллельной ветви в другую он замыкается накоротко щеткой на время, называемое периодом коммутации (рис. 1.18, б)

где Ьщ — ширина щетки; иКол — линейная скорость точки, находящейся на поверхности коллектора.

В простейшем случае, когда щетка уже коллекторной пластины, для секции, замкнутой щеткой (рис. 1.18,0),

Рис. 1.18. Диаграммы токов при коммутации

где iiRi=AUi и i2R2=AU2 — падение напряжения в щеточном контакте соответственно с первой и второй коллекторной пластинами; Rc — активное сопротивление секции; Lpe3 — результирующая индуктивность секции; ек — ЭДС от внешнего поля. Пренебрегая iRc ввиду малости Rc, получим

Полученное основное уравнение коммутации (1.68) совпадает с уравнением коммутации в выпрямителе (1.61). Решение этого уравнения легко получить, предположив, что Д£Л—Д£/2«0,

Чтобы при выходе из-под щетки первой пластины не происходил разрыв тока, в момент времени t = TK ток через первую пластину должен быть равен нулю: 11(Гк)=0=21а-|-ек.ср7 1 к/^рез, откуда

Это условие безыскровой коммутации сводится к тому, чтобы во всех режимах угол коммутации у был неизменен:

где Da — диаметр якоря; va линейная скорость точки, находящейся на поверхности якоря; Ь’щ=ЬщОаКОл — ширина щетки, приведенная к диаметру якоря.

Для выполнения этого условия ЭДС в зоне коммутации ЭДС ек создается специальными добавочными полюсами, обмотка которых включена последовательно в цепь якоря, а их магнитная цепь делается ненасыщенной.

Процесс коммутации в выпрямителях, инверторах и в машинах постоянного тока сходен. И в том и в другом случаях процесс изменения тока в период коммутации определяется значением и формой ЭДС в короткозамкнутом контуре. Поэтому нельзя уподоблять коллектор механическому выпрямителю, как это иногда делается [3].

Наличие коллектора вносит и свои особенности: усложняется конструкция машины и более дорогой становится эксплуатация. Однако эти недостатки электрических машин искупаются их основным преимуществом: в двигательном режиме случайные нарушения коммутации обычно приводят к небольшому подгару коллектора и щеток, а не к аварийному режиму опрокидывания, как в инверторах.

Вследствие этого надежность коллекторной машины постоянного тока значительно выше надежности системы «асинхронный двигатель— преобразователь частоты», ее КПД на 3. 5% выше, машина значительно дешевле, имеет меньшие габариты и массу.

Эти преимущества и заставляют отдавать предпочтение машине постоянного тока, ограничивая применение асинхронного двигателя с частотным регулированием узкими рамками специфических устройств (двигатели, работающие в жидкости, и т. д.).

Источники:

http://radiostorage.net/434-preobrazovateli-postoyannogo-napryazheniya-v-peremennoe.html
http://www.ruselectronic.com/kak-poluchit-iz-pjerjemjennogo-naprjazhjenija-postojannoje/
http://proprovoda.ru/elektrooborudovanie/kak-iz-postoyannogo-toka-sdelat-peremennyj.html
http://zen.yandex.ru/media/id/5c9ca52b27839400b33cc158/5d91bff23f548700ade70d15
http://prosvarku.info/apparaty/peredelat-svarochnyj-apparat-peremennogo-toka-na-postoyannyj
http://servomotors.ru/documentation/electromotor/book220/book220p6.html

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector